
Building Trust and Embracing Regulation

Comprehensive Security
Testing Made Easy	

Comprehensive Security
Testing Made Easy

Our security testing solution Fuzzino employs advanced
fuzzing techniques to provide superior test coverage
for all your software components. It enables you to
mitigate vulnerabilities in your products and reduce
liability risks, ensuring compliance with the Cyber
Resilience Act, without requiring specialized security
testing skills.

The number of companies being attacked is increasing every
year, with a new peak of 60 percent in 2024, accumulating
a damage of more than 200 billion euros in Germany alone,
roughly 4 percent of its GDP. The European Union is adopt-
ing regulations, e. g., the Cyber Resilience Act, to counteract
this trend by imposing new obligations on manufacturers
regarding product security, including regular security testing
to identify vulnerabilities. These new obligations are rein-
forced by the new Product Liability Directive, which makes
manufacturers of digital products liable not only for damages
caused by vulnerabilities, but also for all damages caused by
an attacker exploiting a vulnerability. The new regulations

Main obligations from the Cyber Resilience Act
pertaining to Security Testing:

1.	 Identify and document vulnerabilities, including

third-party and open-source software.

2.	 Promptly address and remediate vulnerabilities,

by providing security updates.

3.	 Apply effective and regular tests and reviews of the

security of the product.

apply to many manufacturers who weren‘t previously required
by law to perform security testing. In addition, the obligations
apply not only to the manufacturer’s source code, but also
to any included third-party software component. The explicit
inclusion of open-source software presents new technical
challenges for manufacturers.

The next level of security testing: identifying
vulnerabilities deep in the system

Security testing has heavily evolved in the last 30 years to a
large suite of methodologies, techniques, and tools. How-
ever, their sheer number can still be overwhelming. Fuzzing
is one of the most widely used security testing techniques.
Its core idea is to execute a system with randomly generated
inputs to uncover vulnerabilities. Even though fuzzing can
be quite effective, many fuzzing tools suffer from certain
challenges and limitations. These can be significant, partic-
ularly to small and medium-sized companies which may lack
experience or resources.

Our solution Fuzzino addresses these challenges and limita-
tions through a set of thoroughly developed features. As a
result, it significantly enhances the usability, efficiency, and
effectiveness of security testing. These improvements enable
manufacturers to leverage state-of-the-art security testing
without the need for specialized and expensive security
testing training.

The key features of Fuzzino comprise:
	– Usability: Fuzzing is associated with the need for specific

skills to use those tools, how to integrate them in a test
environment, and how to interpret their results, which
hinders their wide adoption. To provide the output of a
fuzzer as input to a component, often a so-called fuzzing
harness is necessary. Its implementation requires manual
effort and knowledge of the component and of the
fuzzing tool. Our solution overcomes fuzzing harnesses,
since it enables you to reuse your adapter from functional
testing without any changes.

	– Speed: Today’s fuzzing tools often require long runtimes,
i. e., hours or days, to identify vulnerabilities, which often
makes them unsuitable for the integration in daily tests,
build pipelines, and DevOps processes. Our solution has
been developed with speed in mind. Its advanced test

Fuzzino is designed with usability in mind: It does not require

specific security testing skills, so any tester can benefit

generation engine allows you to identify vulnerabilities
in minutes instead of hours.

	– Adaptive vulnerability detection: Vulnerabilities can
manifest themselves in crashes or memory corruptions.
However, bugs often have more subtle effects. Existing
fuzzers fail to detect these types of vulnerabilities since
they focus on memory corruption. Moreover, most fuzz-
ing tools limit themselves to maximizing code coverage,
which does not necessarily correlate with vulnerability
discovery. Our solution can go beyond maximizing code
coverage as a test objective. It can be configured to
observe any runtime property, e. g., to identify denial of
service vulnerabilities as a test objective.

	– Statefulness: Many vulnerabilities are hidden deep in
the business logic of the system. Many fuzzers can’t
find them as their inputs are rejected in early processing
stages and as these fuzzers do not operate statefully.
Our solution provides a simple and intuitive language to
describe message sequences, and thus system states.
Operating on these descriptions, our solution effectively
finds vulnerabilities deep in the system that other fuzz-
ing tools would miss.

Claudia Plattner, BSI President

Manufacturers will have to take
responsibility for the cybersecurity
of their products and applications
throughout their entire life cycle.“

“

	– Message descriptions: Many fuzzers require well-formed
example inputs, so-called seeds. However, obtaining a
set, which is concise and representative, is not trivial. Our
solution employs scalable protocol descriptions. These
allow you to describe protocol compliant inputs not only
by example inputs (i.e., seeds), but also by describing their
data structures and rules they follow. Such descriptions
can often be directly obtained or derived from official
specifications.

Developers and testers without security testing knowledge
benefit from these features to perform comprehensive securi-
ty testing of any software components within a product.

Simply put, fuzzing involves shooting many arrows at a soft-

ware component under test to find vulnerabilities in it

Two Open-Source Case Studies

The effectiveness of Fuzzino has been confirmed on two
open-source case studies: Eclipse® Mosquitto and NanoMQ.
Both are brokers for the MQTT protocol, which is often used
in the Internet of Things to exchange messages in domains
such as manufacturing, automotive, and agriculture. We have
subjected these brokers to fuzzed inputs on their functional
MQTT interfaces, i.e., without a dedicated adapter for security
testing. Fuzzino generated and sent fuzzed MQTT messages
to the brokers. These messages also considered the server
state, which allowed Fuzzino to produce more complex
interactions than traditional fuzzers. As a result, our solution
found multiple zero-day vulnerabilities in both brokers.

In Mosquitto, Fuzzino has uncovered a high-severity vulner-
ability (CVE-2024-8376) whose effects range from resource
exhaustion to invalid memory accesses, and which can crash
the entire broker. Most notably, we detected this vulnerability
in just a few minutes. In contrast, Google OSS fuzz continu-
ously tested this Mosquitto release for more than a year with
several open-source fuzzers without producing this vulnera-
bility. On NanoMQ, Fuzzino uncovered two zero-day vulner-
abilities which produce invalid memory accesses in a couple
of minutes each. This is a drastic improvement compared to
the hours or days of fuzzing, which are more common in the
industry.

Our security testing solution Fuzzino significantly enhances
the efficiency, effectiveness, and usability of security testing.
By generating and sending fuzzed messages that consider
the server state, it rapidly identifies complex, high-severity
vulnerabilities. This approach outperforms traditional fuzzers,
reducing detection time from hours or days to mere minutes,
and demonstrating superior capabilities in uncovering critical
issues.

© Fraunhofer FOKUS, Berlin 2025

iku | 2502 (Photos: Cover: AI-generated / Fraunhofer FOKUS,

p. 3-4: istock / SeventyFour; p. 6: AI-generated / adobe stock)

Contact

Dipl.-Inform. Martin Schneider

Head of Testing

Business Unit Quality Engineering

Phone +49 30 3463-7383

martin.schneider@fokus.fraunhofer.de

Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31

10589 Berlin

Germany

www.fokus.fraunhofer.de/en/sqc/

security_testing

www.fokus.fraunhofer.de/en

We

connect
everything

