
Intelligent Application
Security Testing

3

Contents

1. Management Summary 4

2. Introduction 6

3. Background 7

4. The IntelliSecTest Solution 9
4.1 Features and Expert Tools 9
4.2	 Workflow	Support	 	 	 10
4.3 Integration 14
4.4 Technical Architecture and System Requirements 14

5. Case Studies 17
5.1 Testing Proprietary Code: mJS 17
5.2 Testing 3rd Party Code: libTiff 19
5.3	 Patch	Validation:	mJS	 	 	 20

6. Summary 22

Imprint 23

Contents

4

Management Summary

Manufacturers	of	products	that	contain	software	and	can	have	
a	data	connection	to	another	device	or	network	need	to	imple-
ment	proactive	security	measures	to	ensure	compliance	with	
regulatory requirements and the changing threat landscape.
The	necessity	for	more	efficient	and	effective	security	testing	
methods and tools is underscored by recent security incidents
and by regulatory acts such as the Cybersecurity Act (CSA)
and	the	Cyber	Resilience	Act	(CRA),	which	are	driven	by	the	
European	Union.	In	accordance	with	the	CRA,	manufacturers	
of	products	with	digital	elements	intended	for	sale	on	the	
European	market	–	which,	in	essence,	encompasses	all	digital	
products	–	are	subject	to	new	obligations	including,	among	
others, to
 – identify	vulnerabilities	through	effective	and	regular	tests	

and
 – address	and	remediate	them	without	delay.

This encompasses not only proprietary code created by manu-
facturers	but	also	(open-source)	software	they	integrate.	While	
these	new	responsibilities	may	be	seen	as	an	additional	burden	
for	manufacturers,	they	offer	a	significant	opportunity	to	
enhance	supply	chain	security.	To	fully	leverage	this	opportu-
nity,	manufacturers	must	have	effective	tools	offering	a	high	
degree of automation and skilled employees to operate them
and process their results.

IntelliSecTest	is	an	innovative	solution	that	helps	manufacturers	
to address the challenges posed by both regulations and the
threat	landscape.	IntelliSecTest	provides	effective	assistance	in	
applying suitable testing methods for C programs to ensure
compliance	with	regulatory	requirements,	such	as	the	CRA.

The	IntelliSecTest	solution	provides	support	to	organizations	
and	their	development	and	testing	teams	in	their	workflows:
 – security testing 3rd	party	code,	e.g.,	open	source	software	

(OSS)
 – security	testing	proprietary	code,	developed	by	the	

manufacturer
 – development	of	effective	security	patches	for	identified	
vulnerabilities.

By	automating	different	steps	of	workflows	with	a	highly	
automated,	configurable	and	extensible	set	of	deeply	integra-
ted	expert	tools,	IntelliSecTest	relieves	employees	from	complex	
tasks,	thus	increasing	their	efficiency	and	reducing	costs.	
Without	IntelliSecTest,	these	tasks	often	require	expert	know-
ledge,	further	straining	this	limited,	valuable	resource.	The	
IntelliSecTest solution enables testers to perform these tasks
efficiently	and	effectively	from	the	outset,	eliminating	the	need	
for	lengthy	training	periods.	Moreover,	development	teams	get	
precise	information	about	the	location	of	vulnerabilities	in	C	
code	and	receive	assistance	in	the	debugging	process	through	
test	cases,	which	significantly	reduces	the	time	required	to	
comprehend	and	resolve	identified	issues.	The	IntelliSecTest	
solution	presents	all	the	results	directly	in	the	working	environ-
ment,	through	integration	with	major	integrated	development	
environments	(IDEs),	such	as	Visual	Studio	Code	(VS	Code),	
using	standardized	interfaces.

1. Management Summary

Need for proactive security measures for manufacturers of digital products
to meet regulatory requirements and address evolving threats, particularly
in light of the Cyber Resilience Act (CRA).

IT software failure paralyzed airports in July 2024

Key	Provisions	of	the	Cyber	Resilience	Act	(CRA)	
Pertaining to Security Testing

The CRA, enacted by the European Parliament in
March 2024, introduces several new obligations
for manufacturers regarding the management of
vulnerabilities in products with digital elements.
These obligations significantly impact security
testing activities:

1. Manufacturers of products with digital
elements must identify and document
vulnerabilities.

2. Manufacturers are required to address and
remediate vulnerabilities promptly, including
the provision of security updates.

3. Manufacturers must conduct effective and
regular tests and reviews of the security of
products with digital elements.

To meet these new requirements, it is essen-
tial that manufacturers enhance their security
testing processes and activities. Although the
CRA will not take effect until 2027, it is crucial for
manufacturers to begin adapting their processes
and upgrading their tool landscape immediate-
ly to ensure compliance when the regulation is
enforced.

5

6

Introduction

The recent sophisticated supply chain attack attempts on
Linux	via	xz	utils,	along	with	the	introduction	of	the	CSA	and	
the	CRA,	underscore	the	necessity	for	more	effective	security	
testing methodologies and tools. These tools should streamline
processes	and	deliver	reliable,	qualified,	and	quantified	results	
that meet the demands of emerging regulations.

While	previous	regulations,	such	as	NIS,	have	focused	on	
critical infrastructure, more recent and upcoming regulations
also	apply	beyond	that	sector	and	target	specific	technologies,	
such as connected digital products in the case of the CRA. The
CRA	imposes	new	responsibilities	on	manufacturers,	requiring	
a focused on effective and regular tests and addressing and
remediating vulnerabilities without delay. These requirements
extend beyond proprietary code to include integrated open
source and 3rd party	software,	thereby	broadening	the	scope	of	
manufacturers’	security-related	activities	and	associated	costs.	
Given	that	security	is	often	seen	as	a	cost	rather	than	a	compe-
titive	advantage,	there	is	an	increasing	need	among	manufac-
turers	to	improve	the	efficiency	of	their	security	measures.

Moreover,	manufacturers	are	now	required	to	demonstrate	
their	compliance	efforts,	particularly	in	the	event	of	a	security	
breach, to mitigate liability for resulting damages and potential
violations	of	privacy	rights.	This	requirement	not	only	reinforces	
the importance of robust security practices and also highlights
the critical need for transparency and accountability in the face
of regulatory scrutiny.

The	IntelliSecTest	solution	effectively	addresses	regulatory	
requirements	by	providing	comprehensive	coverage	of	several	
key	areas.	It	significantly	reduces	the	manual	effort	involved	
in	security	testing	through	advanced	automation,	allowing	for	
the	swift	and	efficient	identification	of	security	vulnerabilities.

IntelliSecTest	provides	reliable	and	quantified	results,	enabling	
manufacturers to make informed decisions and take targeted
actions to meet the necessary security standards. To meet
the	demands	of	new	regulations	such	as	the	CSA	and	the	
CRA,	IntelliSecTest	ensures	comprehensive	compliance	by	
assisting	manufacturers	in	the	identification,	management,	
and	documentation	of	vulnerabilities.	This	encompasses	not	
only proprietary code but also integrated open-source and
3rd	party	software,	ensuring	a	thorough	approach	to	security	
in	line	with	evolving	regulatory	expectations.	Furthermore,	it	
enables	manufacturers	to	provide	evidence	of	their	compliance	
activities.

Additionally,	in	the	event	of	uncovered	vulnerabilities,	Intelli-
SecTest	facilitates	the	validation	of	developed	security	patches.	
By rigorously testing the patches, IntelliSecTest ensures that
they	effectively	eliminate	the	identified	security	issues	without	
introducing	new	vulnerabilities,	thereby	maintaining	the	integ-
rity	and	security	of	the	software.	Therefore,	IntelliSecTest	not	
only	meets	the	immediate	need	for	effective	security	testing	
but	also	ensures	long-term	compliance	with	evolving	regulati-
ons,	making	it	an	indispensable	tool	for	manufacturers	naviga-
ting the complex landscape of cybersecurity requirements.

2. Introduction

Security represents a dynamic challenge, influenced not only by a
 continuously evolving threat landscape but also by changing regulatory
requirements.

01101001
10100111
10011101
01110100

?
?

Static Analysis Fuzzing

Approaches

Advantages
▪ High path coverage
▪ Good presentation of

results
▪ Very few false warnings

▪ Requires approximation
▪ High number of false

warnings (false positives)

▪ Random path coverage
▪ Poor results presentationDrawbacks

}

7

Background

Static program analysis is used for determining interesting pro-
perties	of	a	given	software	program,	such	as	the	absence	of	
security	vulnerabilities,	without	executing	the	program.	Static	
analysis	for	finding	security	vulnerabilities	is	commonly	referred	
to as “Static Application Security Testing” (SAST).
One can distinguish different classes of static analysis approa-
ches,	ranging	from	formal	methods	like	model	checking,	over	
techniques	of	abstract	interpretation,	to	data-flow	analysis.	
While	static	analysis	can	achieve	full	path	coverage,	it	might	
report	false	positives,	i.e.,	warnings	about	vulnerabilities	that	
do	not	actually	occur	when	running	the	program.	Therefore,	
static	analysis	cannot	prove	the	presence	of	errors	(due	to	false	
positives),	but	only	their	absence.	Discriminating	the	true	posi-
tives,	actual	vulnerabilities	that	need	to	be	fixed,	from	these	
false	positives	is	a	tedious	effort	that	is	usually	done	manually,	
which	makes	static	analysis	less	efficient.

In	contrast,	dynamic	analysis	in	security	testing	involves	eva-
luating	a	software	system	or	component	during	its	execution.	
This	method	is	used	to	detect	security	vulnerabilities	that	may	
not	be	evident	through	static	analysis.	Dynamic	analysis	can	
identify issues such as runtime errors, memory leaks, and other
security threats that emerge during the application’s execution.

The	most	prevalent	technique	applied	in	security	testing	is	fuz-
zing,	categorized	under	“Dynamic	Application	Security	Testing”	
(DAST).	Fuzzing,	or	fuzz	testing,	is	a	dynamic	software	testing	
technique	that	involves	automatically	generating	and	inputting	
(semi-)random,	malformed,	or	unexpected	data	into	a	software	
system	to	uncover	coding	errors	and	security-critical	bugs.	The	
primary	objective	of	fuzzing	is	to	trigger	crashes,	memory	leaks,	
or	unhandled	exceptions	that	indicate	potential	vulnerabilities.

3. Background

Static and dynamic analysis tools are currently utilized in the domain of
cybersecurity quality assurance. While both categories serve distinct purpo-
ses, they possess complementary strengths and weaknesses that can limit
their overall effectiveness and efficiency when integrated in a naive way.

Figure 1: Strengths and weaknesses of static analysis and fuzzing

8

Background

However,	fuzzing	is	constrained	by	limited	path	coverage,	
necessitating a substantial amount of time to adequately
cover	an	entire	program.	This	requirement	can	impede	short	
development	cycles.	Fuzzing	typically	produces	a	large	number	
of	crashing	inputs	that	have	the	same	underlying	bug	as	their	
root	cause.	Analyzing	such	duplicate	crashing	inputs	occupies	
valuable	resources.

Furthermore, this large number of duplicates makes it
difficult	to	get	an	overall	picture	of	the	security	posture	
of a program and increases the effort in processing these
results,	even	more	since	they	are	often	presented	in	a	way	
that	makes	it	hard	to	grasp	them.	Even	further,	specific	test	
drivers	require	specific	knowledge	of	the	employed	fuzzing	
tool	when	testing	libraries.

Since using static analysis or dynamic analysis tools only is
insufficient,	IntelliSecTest	implements	a	hybrid	analysis	–	also	
referred	to	as	“Interactive	Application	Security	Testing”	(IAST)	
–	that	combines	and	integrates	SAST	and	DAST	(see	Figure	2).	
This	approach	is	unique	on	the	market,	even	though	there	are	
number	of	market	players	that	provide	static	analysis	tools,	
fuzzing	tools	or	even	both.

The	market	analysis	categorizes	tool	providers	based	on	their	
offerings, indicating that they typically supply either static ana-
lysis	tools	(represented	by	dots	in	the	yellow	area)	or	fuzzing	
tools	(represented	by	dots	in	the	blue	area).	Some	providers	
have	expanded	their	portfolios	to	include	tools	from	the	other	
category, potentially positioning them to offer hybrid analysis
tools	in	the	future	(green	dotted	circles).	However,	as	of	the	
writing	of	this	document,	no	provider	offers	a	hybrid	analysis	
tool.

Notably,	one	provider	is	known	to	be	developing	such	a	tool,	
although	it	is	designed	for	Java	applications	rather	than	C	
applications.

01101001
10100111
10011101
01110100

?
? }

Figure 2: Hybrid analysis, also referred to as IAST, integrates SAST and DAST

4. The IntelliSecTest Solution

Advanced application security testing tool designed to help
manufacturers identify and remediate security vulnerabilities in both
 proprietary and 3rd party code.

9

The IntelliSecTest Solution

The	CRA	imposes	new	vulnerability	handling	requirements	on	
manufacturers.	These	requirements	encompass	effective	and	
regular	testing,	as	well	as	the	identification	and	remediation	of	
vulnerabilities,	extending	beyond	proprietary	code	to	include	OSS.	
This	impacts	the	processes	of	development	and	testing	teams.

The	IntelliSecTest	solution	supports	the	development	and	
testing	teams	in	their	efforts	to	meet	their	new	responsibilities	
in	three	workflows:
 – Security testing 3rd party code, e.g., OSS
 – Security	testing	proprietary	code,	developed	by	the	

manufacturer
 – Development	of	effective	security	patches	for	identified	
vulnerabilities.

4.1 Features and Expert Tools

The features offered by the IntelliSecTest solution are directly
or	indirectly	supporting	these	workflows.

 – Detection of memory corruption vulnerabilities in
C applications. IntelliSecTest is able to identify critical
vulnerabilities	in	C	code,	i.e.,	buffer	overflow,	double	free,	
and	use	after	free,	of	which	buffer	overflows	and	use	after	
free	still	belong	to	the	most	critical	vulnerabilities,	according	
to	CWE	Top	Ten	20231	and	CWE	Top	25	Most	Dangerous	
Software	Weaknesses	20232.

 – Verified vulnerabilities, including proofs.	All	findings	
IntelliSecTest	reports	are	confirmed	vulnerabilities,	false	
positives,	as	known	from	other	tools,	are	excluded.	A	test	
case for analysis and debugging purposes accompanies
each	confirmed	vulnerability.

1	 https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html

2	 https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

 – Proof or estimation on the absence of vulnerabilities
In	the	course	of	the	verification,	IntelliSecTest	discrimina-
tes	true	vulnerabilities	from	false	positives.	However,	it	
may	happen	that	a	vulnerability	candidate	from	the	static	
analysis	cannot	be	proven	to	be	a	false	positive.	In	that	
case, IntelliSecTest can report a statistical estimation that
the	vulnerability	candidate	is	a	false	positive,	which	might	
be	useful	when	justifying	the	testing	efforts	against	third	
 parties, e.g., authorities.

 – Fuzz driver generation for libraries.	Using	its	Fuzz	Driver	
Generation technology, IntelliSecTest completely automates
the	task	of	writing	fuzz	drivers	necessary	to	conduct	library	
fuzzing.

 – Deduplication of fuzzing results.	With	its	advanced	
deduplication	techniques,	IntelliSecTest	reliably	identifies	
duplicates and thus, presents only consolidated test reports
to	the	development	and	test	teams.

 – Validation of security patches.	Through	its	advanced	test	
generation	techniques,	IntelliSecTest	provides	a	comprehensive	
evaluation	of	security	patches,	supporting	developers	through	
test	cases	that	show	the	extent	to	which	vulnerabilities	can	be	
triggered	and	potential	weak	points	in	a	given	security	patch.

 – Integration with major interactive development
 environment (IDE).	IntelliSecTest	seamlessly	integrates	with	
	developers’	most	common	user	interface,	the	IDE.

 – Easily scalable, configurable, and extensible. Through
its container infrastructure using technologies like Kuberne-
tes	and	Docker®, IntelliSecTest scales to nearly any infras-
tructure.	Furthermore,	it	can	be	easily	extended	with	new	
tools.	Through	its	simple	configuration,	the	integration	of	
different	expert	tools	is	done	in	a	few	moments.

The	IntelliSecTest	solution	automates	the	working	steps	of	each	of	
these	workflows	through	a	set	of	deeply	integrated	expert	tools:
 – Fuzz Driver Generation	automatically	generates	fuzz	
drivers	for	library	fuzzing.

 – Library Fuzzing	employs	automatically	generated	fuzz	
	drivers	from	Fuzz	Driver	Generation	to	perform	library	
	fuzzing,	using	AFL++.

Integration with major IDEs for developers

Workflow 1: Testing proprietary code

Workflow 2: Testing 3rd party code

Validation of security
patches

Fuzz driver generation for
libraries

Deduplication of fuzzing
results

Workflow 3: Developing a security patch

Easily scalable, configurable, and extensible

Detection of buffer overflows,
double free, use after free

vulnerabilities in C applications

Verified vulnerabilities
including proofs (executable

test cases with inputs)

Proof or estimation on the
absence of vulnerabilities

Figure 3: Overview of IntelliSecTest features

Figure 4: Workflow and supporting IntelliSecTest expert tools for testing proprietary and 3rd party code

Directed Fuzzing

Fuzz Driver Generation

Verification of SA Findings

Static Analysis (SA)

1. Setting up Test Environment 2. Testing 3. Test Evaluation & Reporting

Library Fuzzing Crash Deduplication

IDE Reporting

10

 – Static Analysis performs	data	flow	analyses	on	the	source	
code	to	identify	potential	vulnerabilities.

 – Verification of SA Findings	employs	advanced	constraint	
solving	techniques	to	discriminate	true	positives	and	false	
positives	from	the	static	analysis.	It	generates	executable	
test	cases	as	proofs	for	the	true	positives.

 – Directed Fuzzing	investigates	code	regions	through	direc-
ted	fuzzing	for	vulnerabilities,	using	AFLGo.

 – Crash Deduplication	identifies	duplicate	crashes	through	
stack trace analysis to report only unique bugs.

 – Patch Validation	generates	a	diverse	test	suite	to	trigger	
a	vulnerability	to	evaluate	the	efficacy	of	a	security	patch.

 – IDE Reporting presents the test results after deduplica-
tion	in	the	IDE,	within	the	source	code	and	in	the	corre-
sponding	widgets.

4.2 Workflow Support

In	the	following,	we	present	three	workflows	which	would	
largely	benefit	from	innovations	of	the	IntelliSecTest	solution.	

These are:
 – Testing proprietary code
 – Testing 3rd party code, e.g., OSS
 – Developing	a	security	patch	for	a	given	vulnerability

In	the	following,	we	will	present	the	workflows	from	a	high	
level	perspective	and	discuss	how	the	capabilities	of	the	Intel-
liSecTest	solutions	support	them	in	detail.	For	each	workflow,	
the IntelliSecTest solution builds upon established security tes-
ting	tools,	such	as	AFL	and	AddressSanitizer	(ASan),	and	builds	
on	the	one	hand	a	wrapper	and	on	the	other	hands	integrates	
them	into	a	turnkey	solution	that	developers	without	expert	
knowledge	in	security	testing	and	experience	in	using	respecti-
ve	tools	can	use	out	of	the	box.

Static Analysis

True
Positive

False
Positive

Static Code
Analysis

Directed
Fuzzing

Test Case
Generation

Test Case
Execution

Dynamic Analysis

IDE

Vulnerability
candidates

Runtime
Information

SUT

Figure 5: Overview of the vulnerability detection process for proprietary code

11

Testing Proprietary Code A common use case is to test
proprietary	code,	i.e.,	code	developed	by	the	manufacturer,	for	
vulnerabilities.	It	consists	of	three	steps,	as	shown	in	Figure		4.	
First,	the	developers	or	tester	must	set	up	a	test	environ-
ment that includes testing tools and the system under test
(SUT). This step is usually done manually, and requires a deep
understanding	of	the	fuzzing	tool.	This	is	where	IntelliSecTest	
steps	in	and	completely	automates	this	step,	relieving	deve-
lopers	and	testers	of	this	task,	through	its	expert	Fuzz	Driver	
Generation.	As	a	result,	the	subsequent	Library	Fuzzing	can	be	
started	automatically.	The	second	step	of	the	this	workflow	–	
testing	–	is	done	by	the	static	analysis	and	the	verification	of	its	
results. IntelliSecTest’s Static Analysis (SA) expert tool automa-
tically	identifies	vulnerability	candidates	in	the	source	code	and	
propagates	this	information	to	the	Verification	of	SA	Findings	
expert	tool,	which	processes	this	information	and	discriminates	
between	true	and	false	positives	using	advanced	constraint	
solving	techniques.	If	this	is	not	possible,	Directed	Fuzzing	
dynamically	analyzes	the	source	code,	which	is	suspected	of	
containing	the	vulnerability.

As	shown	in	Figure	5,	IntelliSecTest	performs	static	analysis,	
such	as	deep	data-flow	analyses,	to	compute	potential	vulne-
rability candidates and to extract static information from the
SUT	regarding	them.	In	addition,	it	runs	directed	fuzzing	in	the	
background to incrementally enhance the static analysis results
through	dynamic	analysis.	To	avoid	reporting	false	warnings,	
the	IntelliSecTest	solution	verifies	all	vulnerability	candidates	by	
executing	small,	fine-grained	test	cases	directed	towards	the	
vulnerability	in	question	that	are	automatically	generated.	This	
way,	IntelliSecTest	filters	out	vulnerability	candidates	that	are	
false	warnings	or	cannot	be	exploited.

The	test	results	are	then	subjected	to	Crash	Deduplication,	so	
that	any	vulnerability	identified	is	only	reported	only	once	and	
directly	presented	within	the	developer’s	working	environment	
via	IDE	Reporting.	A	test	case	is	attached	to	each	reported	vul-
nerability,	completing	the	Test	Evaluation	&	Reporting	phase.	
This	allows	developers	to	understand,	analyze,	and	debug	a	
vulnerability.

Testing 3rd Party Code	As	software	products	become	increa-
singly complex, they are composed of many components of
varying	origins,	e.g.,	proprietary	code,	OSS,	and	contractor-
supplied	artifacts.	To	gauge	the	security	of	such	software,	it	is	
crucial to test 3rd	party	code	to	eliminate	supply	chain	vulne-
rabilities and to meet regulatory requirements, such as those
from	the	CRA.	The	workflow	of	testing	3rd party code applies,
for	example,	when	a	developer	wants	to	integrate	an	OSS	
for	a	new	functionality	of	the	software	product	or	if	a	deve-
loper	is	tasked	to	evaluate	the	security	of	already	integrated	
components.

Building	on	the	previous	discussion	of	testing	proprietary	code	
for	vulnerabilities,	the	workflow	for	testing	3rd party code
follows	a	similar	three-step	process,	as	shown	in	Figure	4.	First,	
the	test	environment	must	be	set	up,	which	includes	configu-
ring the necessary test tools and the SUT. Additionally, test
adapters are required to connect the test tool to the SUT. This
requires a lot of of manual effort and requires a lot of time,
since	in	most	cases	the	tester	is	not	familiar	with	the	code	to	
be tested. In contrast to the manual effort typically required in
this	phase,	IntelliSecTest	utilizes	its	Fuzz	Driver	Generation	tool	
to	automate	the	setup,	significantly	simplifying	the	process	for	
developers	and	testers.

Patch Validation

1. Reproduce 2. Localize

Verification of SA Findings

Static Analysis (SA)

3. Bugfix 4. Validate Bugfix

Analyze Repair Test

5. Regression Test

Directed Fuzzing

Patch Validation

IDE Reporting

to be done by the
developer

IDE Reporting

IDE Reporting

Verification of SA Findings

Static Analysis (SA)

Figure 7: Workflow and supporting IntelliSecTest expert tools for patch validation

12

The IntelliSecTest Solution

Figure	6	displays	how	IntelliSecTest	supports	and	automates	this	
workflow.	First,	IntelliSecTest	analyzes	the	target	library	for	pos-
sibly	vulnerable	entry	points	and	passes	them	to	the	Fuzz	Driver	
Generation.	The	Fuzz	Driver	Generation	combines	this	informa-
tion	with	the	library	and	generates	a	fuzz	driver,	a	dedicated	
program	that	exercises	the	library	and,	thus,	makes	it	fuzzable.	
The	next	step	is	to	compile	the	fuzz	driver	and	use	it	with	a	
modern	greybox	fuzzer,	AFL++.	During	fuzzing,	every	detected	
crash	is	passed	to	the	Crash	Deduplication	for	post-processing.	
Finally, IntelliSecTest reports the deduplicated crashes back to
the	user.	Static	Analysis	and	the	verification	of	its	results	also	
identify	further	vulnerabilities,	similar	to	the	first	workflow.

While	this	workflow	is	technically	identical	to	the	first,	it	has	
one	major	difference	for	the	manufacturer:	the	developer	
is	not	familiar	with	the	code.	This	can	be	a	major	obstacle	
to	effective	and	efficient	security	testing,	and	can	pose	a	

significant	risk	to	manufacturers	as	they	deal	with	the	security	
of integrated 3rd party products. This risk stems from the fact
that	open	source	projects	are	not	accountable	for	vulnerabi-
lities	in	their	software,	that	it	is	often	unknown	whether	and	
to	what	extent	the	security	of	the	OSS	has	been	verified,	and	
whether	this	process	conforms	to	standards	and	best	practices.	
In	fact,	even	popular,	widely	used	OSS	is	regularly	affected	
by	critical	vulnerabilities,	such	as	Heartbleed,	ShellShock,	and	
Log4Shell.

Patch Validation The Patch Validation addresses the CRA’s
requirement	that	manufacturers	must	provide	patches	for	iden-
tified	vulnerabilities	in	a	timely	manner.	IntelliSecTest	facilitates	
this	process	to	enable	developers	to	test	code	that	is	intended	
to	address	a	vulnerability	identified	by	the	developer	or	repor-
ted by security researchers.

Pre-Processing Greybox Fuzzing Post-Processing

Static Code
Analysis

Fuzz Driver
Generation

Compiler Fuzzing
Engine

Deduplication

Crash
DriverLibary

Crashes

Figure 6: Overview of the 3rd party library testing process

Patch ValidationVulnerability Analysis

Directed
Fuzzer

Test Suite
Execution

Test
Cases

no

yes

?
Failed Patch

Complete Patch
Vulner-
ability

Unpatched
SUT

Test
Suite

Patched
SUT

Vulnerability
triggered by
any test case?

Figure 8: Overview of security patch validation process

13

The IntelliSecTest Solution

Figure	7	illustrates	a	comprehensive	patch	validation	workflow	
supported by IntelliSecTest, structured into three main stages:
Analyze,	Repair,	and	Test.	Each	stage	of	the	workflow	has	
specific	tasks	and	utilizes	specialized	tools	to	ensure	compre-
hensive	patch	validation	and	efficient	resolution	of	security	
vulnerabilities.	The	initial	step	of	the	analysis	stage	is	to	repro-
duce	the	reported	vulnerability	to	confirm	its	existence	and	
understand its impact. This step is undertaken to accurately
reproduce	the	conditions	under	which	the	vulnerability	occurs.	
As	with	the	previous	workflow,	various	expert	tools	can	be	
employed	to	assist	with	the	localization	of	the	vulnerability.	In	
the	Repair	stage,	the	developers	implement	a	security	patch	
for	the	identified	vulnerability.	The	results	from	the	preceding	
stage	provide	essential	input	to	the	patch	development	pro-
cess.	This	includes	comprehensive	data	about	the	vulnerability,	
such as its location in the code and the test cases generated in
the	Reproduce	stage	that	trigger	the	vulnerability.	In	the	Test	
stage,	the	Patch	Validation	expert	tool	is	used	to	confirm	that	
the	patch	is	effective	and	fully	closes	the	previous	vulnerability	
and	that	the	applied	security	patch	resolves	the	issue	without	
introducing	new	problems.	If	the	vulnerability	has	not	been	
fully	closed,	the	IDE	reporting	shows	the	open	vulnerability.	
Finally, the IntelliSecTest expert tools are used to perform
Regression Testing to check the codebase for any remaining or
new	vulnerabilities.

By	providing	the	unpatched	code	of	the	SUT	along	with	an	
input	that	triggers	the	known	vulnerability,	the	IntelliSecTest	
solution	generates	a	test	suite	that	triggers	this	vulnerability	in	
many	different	ways.	Static	analysis	helps	to	identify	the	speci-
fic	location	of	the	vulnerability	in	the	source	code.	The	develo-
per	can	use	both	information	to	efficiently	develop	a	security	
patch	and	validate	it	through	the	generated	test	suite.	Once	
the	patch	has	been	confirmed	to	be	effective	and	not	overfit	to	
a	specific	proof	of	concept,	the	IntelliSecTest	solution	performs	

further	regression	tests	to	prevent	that	further	vulnerabilities	
are	introduced	by	the	patch.	Figure	8	shows	the	IntelliSecTest	
solution	for	the	security	patch	validation	(Workflow	3)	and	the	
involved	IntelliSecTest	expert	tools.

The	Patch	Validation	uses	directed	grey-box	fuzzing	to	genera-
te	more	test	cases	that	trigger	the	vulnerability	in	the	unpat-
ched	version	of	the	SUT.	These	new	test	cases	differ	in	their	
code	coverage	profile	from	the	one	provided	by	the	develo-
pers,	meaning	that	they	will	reach	other	locations	in	the	code	
when	executed.	This	way,	the	new	test	cases	have	the	poten-
tial to trigger the bug in spite of the patch, since an incomplete
patch might not consider all possible paths through the code
that	lead	to	its	vulnerable	part.	The	generated	test	cases	are	
then used as input for the patched SUT. Address-sanitation
is	used	to	check	if	the	vulnerability	can	be	triggered	and	thus	
reveals	a	blind	spot	in	the	patch.

14

The IntelliSecTest Solution

4.3 Integration

4.3.1 IDE: VS Code
The IntelliSecTest tool is integrated into VS Code3 to inform
developers	about	security	vulnerabilities	during	the	develop-
ment. Using MagpieBridge4	and	the	Language	Server	Protocol	
(LSP)5,	IntelliSecTest	provides	seamless	and	extensible	integra-
tion	with	most	IDEs.	Therefore,	the	integration	into	develop-
ment	environments	such	as	VS	Code,	IntelliJ	IDEA	products	
and	Eclipse	works	out-of-the-box.

Figure	9	shows	the	integration	of	IntelliSecTest	into	VS	Code.	
Static	analysis	results	are	initially	reported	as	vulnerability	
candidates	(indicated	by	a	blue	squiggly	underline,	as	shown	on	
the right side of the image and by an information symbol in the
problems	window)	until	they	are	confirmed.	Once	the	analysis	
results	are	confirmed,	IntelliSecTest	raises	the	severity	to	an	
error	(red	squiggles,	shown	in	the	left	side	of	the	figure	and	a	
cross	symbol	in	the	problems	window).	Differentiating	severity	
levels	of	warnings	within	the	IDE	allows	the	developers	to	hide	
unconfirmed	vulnerabilities	and	thus,	prioritize	fixes	according-
ly.	In	addition,	developers	can	interact	with	the	diagnostics	
to	navigate	through	the	vulnerability	path	reported	by	Intelli-
SecTest’s	analysis	tool	(see	problems	window	in	Figure	9):	The	
integration	of	IntelliSecTest	with	VS	Code	is	enabled	by	a	simple	
configuration	file	that	is	specified	by	the	user.	This	file	contains	
information about the compilation commands and the connec-
tivity	information	(URL	and	port)	of	the	IntelliSecTest	cluster.

3	 https://code.visualstudio.com/

4 https://github.com/MagpieBridge/MagpieBridge

5 https://microsoft.github.io/language-server-protocol/

4.3.2 CodeChecker
CodeChecker6	is	a	web	application	that	runs	various	static	code	
analysis tools and displays their results. It can display the results
from	IntelliSecTest	in	real	time	as	they	occur.	It	is	convenient	to	
get	an	overview	of	all	the	results	of	the	analysis	and,	e.g.,	plan	
a	strategy	to	solve	the	problems.	For	each	Continuous	Integra-
tion (CI) run, a link can be generated that displays the analysis
results.	Figures	10	and	11	show	a	screenshot	of	CodeChecker	
with	results	generated	by	IntelliSecTest	for	a	simple	demo	
example.

4.4 Technical Architecture and System
Requirements

IntelliSecTest	is	built	on	the	microservices	architecture	para-
digm,	which	structures	an	application	as	a	collection	of	
loosely	coupled	services,	each	of	which	implements	different	
functionality. IntelliSecTest’s concrete implementation uses
Docker®	and	Kubernetes	to	realize	those	design	goals,	among	
other	technologies.	Docker®, a platform used for automating
the deployment, scaling, and management of applications, is
leveraged	to	implement	the	microservices.	By	encapsulating	
each	service	in	a	Docker	container,	the	services	can	be	tested,	
deployed, scaled, and updated independently. Kubernetes is an
open-source	platform	for	managing	containerized	workloads	
and	services,	and	provides	a	robust	framework	for	running	dis-
tributed	systems	resiliently.	It	handles	the	scaling	and	failover	
of	applications,	and	offers	various	deployment	patterns.	It	is	
also	highly	configurable	so	that	IntelliSecTest	can	be	deployed	

6 https://codechecker.readthedocs.io/en/latest/

Figure 9: Example of IDE integration via LSP. Confirmed vulnerabilities have red error squiggles instead of the informational
blue squiggles. The vulnerability path can be used for navigation, as shown with the highlighted source tree at the bottom.

https://microsoft.github.io/language-server-protocol/
https://codechecker.readthedocs.io/en/latest/

15

The IntelliSecTest Solution

in	different	scenarios	with	different	hardware	(e.g.,	on	a	single	
server	or	a	cluster	of	servers).	One	of	the	standout	features	of	
the	IntelliSecTest	solution	is	its	extensibility	and	flexibility.	The	
innovative	design	allows	users	to	seamlessly	add	new	micro-
services	tailored	to	their	specific	needs,	whether	for	analysis,	
execution,	reporting,	or	other	essential	tasks.	By	empowering	
developers	to	integrate	additional	functionalities	effortlessly,	
IntelliSecTest	ensures	that	other	security	testing	frameworks	
can	evolve	and	adapt.	This	adaptability	not	only	streamlines	
the	testing	processes	but	also	enhances	the	overall	efficiency	
and	effectiveness	of	your	security	initiatives.

With the ability to run multiple analyses in parallel, the Intel-
liSecTest	solution	delivers	efficiency.	This	powerful	capability	
ensures that multiple analysis, execution, and reporting tasks
can	be	performed	simultaneously,	dramatically	reducing	overall	
testing	time	and	accelerating	your	development	cycle.	In	Intel-
liSecTest	there	is	also	experimental	support	for	CI	via	GitLab.	
CI	is	a	development	practice	where	developers	integrate	their	
code	into	a	shared	repository	frequently,	preferably	several	
times a day.

Figure 10: CodeChecker shows a list of crashes to get a fast overview. The crashes can be sorted and filtered.

Figure 11: CodeChecker shows a crash that has been reported by ASan within the IntelliSecTest solution.
It also shows a stack trace and highlights the corresponding lines of the source code.

16

The IntelliSecTest Solution

Each	integration	can	then	be	verified	by	automated	builds	
and tests. The primary goal of CI is to catch and address bugs
faster,	improve	software	quality,	and	reduce	the	time	to	valida-
te	and	release	new	software	updates.	This	is	where	IntelliSec-
Test can be used for nightly or merge request related in-depth
analysis	of	the	code.	For	GitLab	we	provide	a	.gitlab-ci.yml	
file	that	starts	the	analysis	with	IntelliSecTest.	The	configura-
tion can be adjusted to only run at certain points of time, on
merge requests and also an analysis timeout can be set to limit
resource usage (such as time, CPU, RAM, etc.).

Thanks	to	the	microservice	architecture,	IntelliSecTest’s	
system	hardware	requirements	can	be	efficiently	scaled.	The	
minimum requirements are tailored to the system under test
and	the	workflow	used.	During	development	we	tested	the	
communication	between	each	microservice,	representing	the	
minimal resource requirements for the IntelliSecTest solution.

Integration	tests	require	only	two	cores	and	6	GB	of	memory	
to	complete	within	10	to	60	seconds.	The	hardware	require-
ments	have	been	obtained	using	real-world	examples,	mJS	
and	libTiff.	Each	with	a	size	of	35	K	lines	of	code	(KLOC),	has	
specific	resource	requirements	for	testing	which	can	be	seen	in	
Table 1.

These are just examples, but the architecture is designed to
support	and	cater	to	your	specific	needs,	whether	you	need	to	
use	some	of	the	microservices	or	combine	them.	

Minimum and Recommended System Hardware Requirements for Common Tasks

Minimum	hardware	requirements

Recommended	hardware	requirements

CPU Cores

2

5

Memory (GB)

6

11

Table 1: Minimum and Recommended System Hardware Requirements for Common Tasks. CPU

requirements can be adjusted based on runtime, while memory requirements remain fixed.

Current runtime values are suggested for daily tasks, but higher values increase the likelihood of

achieving greater coverage. For release testing, a runtime of 24 hours is recommended.

5. Case Studies

Demonstrating the effectiveness of the IntelliSecTest solution on the
 open-source software projects mJS and libTiff.

17

Case Studies

To	assess	the	effectiveness	of	the	IntelliSecTest	solution,	we	
conducted	a	series	of	experiments	on	two	SUTs:	the	open	
source	softwares	mJS7 and libTiff8.		These	SUTs	were	chosen	
due	to	their	documented	vulnerabilities	(as	referenced	in	the	
CVE	databases)	and	their	widespread	usage.	In	this	section,	we	
illustrate	how	the	IntelliSecTest	solution	enhances	developer	
workflows	through	these	case	studies.

5.1 Testing Proprietary Code: mJS

Our	first	case	study	is	conducted	from	the	perspective	of	a	
development	team	which	decides	to	systematically	address	
the	security	of	their	project	(namely,	a	JavaScript	interpreter).
Since	a	lot	of	code	has	been	written,	the	team	decides	to	rely	
on	automated	tools	to	avoid	the	manual	effort	of	inspecting	
the	code	through	reviews.	Since	the	team	has	no	experience	
in using automated security testing tools and interpreting their
results,	they	are	is	looking	for	a	holistic	solution	that	provides	
results	in	a	developer-friendly	way,	within	the	IDE.

The	IntelliSecTest	solution	is	a	perfect	fit	for	the	development	
needs,	as	it	can	be	run	fully	automated	with	minimal	configu-
ration	and	user	interaction,	delivering	only	the	actual	results	
inside	the	source	code	in	the	IDE	of	the	developer’s	choice.

The	IntelliSecTest	solution	provides	a	pre-built	configuration,	
called	job	graph,	that	uses	various	static	and	dynamic	analysis	
tools,	to	perform	the	security	analysis	required	by	the	develo-
per, and only requires inputs such as the location of the source
code (e.g., URL of the repository) and compilation scripts. Since
the	IntelliSecTest	solution	reports	findings	as	soon	as	they	are	
confirmed,	developers	do	not	have	to	wait	for	the	analysis	to	

7 https://github.com/cesanta/mjs

8 http://www.libtiff.org

be	completed,	but	get	the	results	presented	within	their	IDE	as	
soon	as	they	arrive.	In	addition,	executable	test	cases	and	stack	
trace	information	are	provided	with	each	confirmed	vulnerabili-
ty for analysis and debugging purposes.

We	illustrate	how	to	use	the	IntelliSecTest	solution	and	what	
results can be expected using mJS as an example. mJS is a
lightweight	JavaScript	engine	designed	for	microcontrollers	
and	other	constrained	devices.	This	engine	is	particularly	useful	
for	Internet	of	Things	(IoT)	applications,	where	it	allows	deve-
lopers	to	write	and	deploy	JavaScript	code	directly	on	micro-
controllers,	facilitating	rapid	prototyping	and	development	of	
connected	devices.

After	running	the	IntelliSecTest	solution	for	24	hours,	the	deve-
lopers	were	presented	with	seven	actual	vulnerabilities	that	
had	previously	gone	undetected.	This	immediate	and	accurate	
detection demonstrates the IntelliSecTest solution’s capabilities
to	identify	vulnerabilities.	The	results	of	the	verification	of	the	
vulnerability	candidates	are	summarized	in	Table	2,	highlighting	
the	effectiveness	of	the	IntelliSecTest	solution	in	identifying	
vulnerabilities	and	providing	developers	with	the	information	
they	need	to	maintain	a	secure	development	life	cycle.

During	the	static	code	analysis	phase,	IntelliSecTest	identifies	35	
vulnerability	candidates,	primarily	related	to	memory	manage-
ment	and	buffer	overflows.	These	vulnerability	types	are	critical	
because	they	often	represent	significant	security	risks	if	left	
unaddressed.	To	investigate	these	potential	vulnerabilities,	
IntelliSecTest	generates	specific	test	cases	to	exercise	22	of	
the	35	vulnerability	candidates.	This	automation	of	test	case	
generation	ensures	that	the	majority	of	potential	vulnerabilities	
are	thoroughly	tested	without	the	need	for	extensive	manual	
effort.

After	executing	these	test	cases,	seven	candidates	are	con-
firmed	as	true	positives.	These	true	positives	represent	real	
security	vulnerabilities,	demonstrating	the	accuracy	and	effec-
tiveness	of	the	IntelliSecTest	tool.	By	discovering	these	issues	in	

https://github.com/cesanta/mjs
http://www.libtiff.org

18

Case Studies

3rd	party	or	proprietary	code,	developers	can	take	immediate	
action	to	implement	the	necessary	fixes.	In	recent	testing,	the	
generation	process	for	confirming	seven	vulnerabilities	took	
only	a	few	seconds.	This	rapid	turnaround	ensures	that	poten-
tial	security	issues	are	quickly	verified,	allowing	developers	
to	address	them	promptly.	By	significantly	reducing	the	time	
between	reporting	and	confirmation,	the	IntelliSecTest	solution	
enhances	the	efficiency	of	your	security	testing	workflow.

For	the	remaining	13	vulnerability	candidates,	where	specific	
test cases cannot be generated, the IntelliSecTest solution
performs	targeted	fuzzing.	Each	vulnerability	candidate	is	tho-
roughly	fuzzed	for	up	to	three	hours.	Despite	these	efforts,	no	
true	positives	were	identified	within	three	hours	per	vulnera-
bility candidate, strongly suggesting that these candidates are
likely	false	positives.	To	quantify	the	unconfirmed	vulnerability	
candidates,	the	IntelliSecTest	solution	provides	a	residual	risk	
estimation,	assigning	a	probability	value	to	each	vulnerability	
candidate that helps to assess the likelihood of each candidate
being	a	true	positive.

The automated generation of test cases and the use of targe-
ted	fuzzing	for	remaining	candidates	demonstrate	the	effi-
ciency	of	the	IntelliSecTest	solution.	It	minimizes	the	reliance	
on manual testing, accelerates the debugging process, and
ensures	comprehensive	code	coverage.	Unlike	existing	secu-
rity	analysis	tools,	the	IntelliSecTest	solution	provides	a	more	
comprehensive	and	accurate	security	assessment	by	reporting	
exactly	where	the	vulnerabilities	are	located	and	how	they	
manifest during their execution. By pinpointing the exact lines
of	code	where	vulnerabilities	reside,	developers	can	quickly	
address	issues	and	seamlessly	integrate	security	fixes	into	their	
workflow.	This	efficiency	not	only	accelerates	the	development	

process by reducing the time and effort required for remedia-
tion,	but	also	significantly	reduces	the	risk	of	security	breaches.	
For	an	example	of	a	result	within	IDE,	see	Figure	9.	The	IDE	
integration	provides	both	validated	(left	side)	and	potential	
vulnerabilities	that	have	not	yet	been	classified	as	true	or	
false	positives	(right	side).	Developers	are	not	only	shown	the	
(potential)	vulnerability,	they	also	get	important	information	
about	the	data	flows	that	lead	to	the	vulnerability.

Using	the	IntelliSecTest	solution	significantly	increases	both	
the	speed	and	effectiveness	of	security	testing	and	provides	a	
comprehensive	set	of	benefits:

Accurate identification of vulnerabilities
IntelliSecTest employs a combination of static and dyna-
mic	analysis	to	accurately	identify	vulnerabilities.	This	dual	
approach	ensures	a	comprehensive	detection	of	both	code-
level	issues	and	runtime	anomalies.	By	understanding	the	
context	in	which	the	vulnerabilities	occur,	IntelliSecTest	can	
generate	highly	targeted	test	cases.	Static	analysis	can	provide	
the	exact	line	of	code	where	the	vulnerability	resides,	as	shown	
in Figure 9, and dynamic security testing ensures that only true
positives	are	reported.	The	figure	shows	that	the	developer	is	
informed	about	a	double-free	vulnerability	in	line	1061.

Reduced manual effort
Developers	are	not	required	to	manually	review	the	code	or	
write	an	extensive	test	suite	for	each	vulnerability	candidate,	
significantly	reducing	the	time	required	for	security	testing.	In	
the	case	of	the	experiment	conducted,	test	cases	for	22	vul-
nerability	candidates	are	automatically	generated	without	the	
involvement	of	a	developer.

Performing 24 h vulnerability detection process for mJS

Test Cases

Duration

Results

Static Analysis

(SA)

n/a

around 2 min (in total)

35	vulnerability	candidates

Verification of SA Findings

(Constraint Solving)

3	test	cases	on	avg.

(per	vulnerability	candidate)

5:30	min	on	avg.

per	vulnerability	candidate

7	confirmed	vulnerabilities

(plus	12	further	vulnerabilities)

Verification of SA Findings

(Directed Fuzzing)

450,000	test	cases	on	avg.

(per	vulnerability	candidate)

1h	per	vulnerability	candidate

0	confirmed	vulnerabilities

Table 2: Performing 24 hrs vulnerability detection process for mJS

19

Case Studies

Vulnerability-specific test case generation
Instead of relying on generic test cases, IntelliSecTest genera-
tes	tests	based	on	the	specific	type	of	the	vulnerability	and	its	
context	within	the	source	code.	Vulnerability	specific	test	gene-
ration ensures that the test case is most likely to exploit the
vulnerability	in	question,	increasing	the	likelihood	of	detecting	
true	positives	and	saving	resources.

Early and continuous feedback
The	IntelliSecTest	solution	integrates	seamlessly	into	the	develop-
ment	CI/CD	pipeline,	providing	continuous	and	early	feedback	
to	developers.	Vulnerabilities	are	identified	during	development,	
thus	accelerating	the	overall	vulnerability	fixing	process.

5.2 Testing 3rd Party Code: libTiff

The	second	case	study	considers	a	development	team	that	
wishes	to	incorporate	TIFF	file	processing	functionality	into	its	
application.	During	the	research	phase,	the	team	identified	
libTiff as a suitable candidate to use for this purpose. The
development	team	locates	the	header	files	that	export	the	
functionality	and	becomes	acquainted	with	the	build	steps.	
Prior to integrating the library into their application, the team
aims	to	ascertain	that	it	does	not	introduce	any	unknown	
vulnerabilities	from	libTiff.	As	the	team	lacks	experience	in	
security analysis, they intend to rely on a fully automated tool.

IntelliSecTest	offers	an	effective	solution	for	automated	vulne-
rability detection, eliminating the need for in-depth security
expertise	or	familiarity	with	the	3rd party code. It offers a pre-
defined	configuration	for	testing	3rd party code based on an
automated	fuzzing	workflow,	requiring	the	user	to	input	only	
the	location	of	the	header	files	and	the	necessary	build	steps.	
The analysis results are presented in an accessible format,
accompanied by detailed information on the nature of the
vulnerability,	its	location,	and	the	corresponding	call	stack.

We	evaluated	the	capability	of	IntelliSecTest	to	test	3rd party
code (cf. Section 4.2) on libTiff, as included in the Magma9
framework.	As	previously	stated,	libTiff	is	a	library	for	proces-
sing images in the TIFF format. The library offers its functio-
nality through an API comprising 182 functions and a total of
25,000	lines	of	code.	The	version	included	in	Magma	contains	
14	“forward-ported”	real-world	bugs,	as	documented	on	the	
GitHub page for the project10. These bugs are included to test
the	ability	to	reach	deep	paths	within	the	library	as	well	as	the	
ability	of	testing	tools	to	trigger	real-world	bugs.	

9	 https://hexhive.epfl.ch/magma/

10	 https://github.com/HexHive/magma/tree/v1.2/targets/libtiff/patches/bugs

Once	the	location	of	the	library	header	files	and	the	build	
configuration	steps	have	been	provided,	IntelliSecTest	per-
forms	the	subsequent	steps	without	requiring	user	input.	In	
the	initial	phase,	IntelliSecTest’s	static	analysis	tool	identified	68	
API	functions	as	potential	entry	points	for	a	fuzzing	campaign.	
The	results	were	then	used	to	generate	a	fuzz	driver,	which	
was	subsequently	fuzzed	for	24	hours	with	AFL++.	Within	this	
time	frame,	IntelliSecTest	achieved	an	average	line	coverage	of	
18%	while	producing	814	crashes.	The	further	post-processing	
of crash deduplication reduced the number of crashes to 172
(21%),	which	is	the	result	presented	to	the	user.	For	comparison,	
state-of-the-art	deduplication	tools	such	as	Crashwalk	reduce	
the same crashes merely to 613. At the same time the IntelliSec-
Test-generated	driver	can	reach	four	Magma	bugs	and	trigger	
three of those.

The	integration	of	automated	fuzz	driver	generation	and	dedu-
plication	in	a	tool	like	IntelliSecTest	provides	substantial	bene-
fits	for	development	teams	seeking	to	guarantee	the	security	
of	their	applications	without	extensive	security	expertise.

Reduced Manual Effort
The	automatic	generation	of	fuzz	drivers	eliminates	the	need	
for	developers	to	manually	write	fuzzing	scripts,	thus	streamli-
ning	the	process.	This	significantly	reduces	the	time	and	effort	
required	to	set	up	a	fuzzing	campaign,	particularly	in	the	case	of	
3rd	party	code.	This	allows	developers	to	focus	on	other	critical	
tasks.	To	initiate	a	fuzzing	campaign,	developers	simply	need	to	
provide	the	location	of	the	header	files	and	the	build	confi-
guration steps. The tool handles the rest, making the process
accessible	to	those	with	limited	security	analysis	experience.

Comprehensive Coverage
IntelliSecTest	automatically	identifies	API	functions	as	entry	
points,	ensuring	comprehensive	testing	of	the	library’s	func-
tionality and eliminating the need for the manual effort. For
libTiff,	68	such	potential	entry	points	have	been	identified	for	
fuzzing.	The	manual	identification	of	these	entry	points	would	
be	extremely	time-consuming	and	error-prone.	It	would	requi-
re	developers	to	meticulously	analyze	the	codebase	to	pinpoint	
relevant	API	functions.

Enhanced Crash Deduplication
The automated deduplication of crashes reduces the number
of	unique	issues	that	developers	must	investigate.	This	
approach streamlines the analysis process by focusing on
distinct	vulnerabilities,	rather	than	repeatedly	examining	similar	
crashes.	In	the	absence	of	deduplication,	developers	would	
be	confronted	with	the	task	of	investigating	814	crashes,	a	
significant	increase	from	the	174	crashes	reported	by	IntelliSec-
Test.	Each	of	these	crashes	would	require	individual	attention	
to	determine	their	root	causes	and	potential	fixes,	which	would	
be	a	significant	time	commitment	for	the	development	team.

172

613

814

0 100 200 300 400 500 600 700 800 900

Unique Crashes (IntelliSecTest)

Unique Crashes (CrashWalk)

Total Crashes

smaller is better

20

Case Studies

Superior Deduplication The tool’s deduplication capabili-
ties	exceed	those	of	state-of-the-art	tools	such	as	Crashwalk.	
In the case study, IntelliSecTest reduced 814 crashes to 172
unique	issues,	whereas	Crashwalk	reduced	them	to	613.	This	
highlights	IntelliSecTest’s	ability	to	minimize	redundant	crash	
reports	more	effectively,	allowing	developers	to	focus	on	
addressing	unique	vulnerabilities.

Time Savings By reducing the number of crashes to be analy-
zed,	deduplication	saves	valuable	time	for	developers,	allowing	
them to address critical issues faster.

Improved Resource Allocation	With	fewer	crashes	to	
investigate,	development	and	security	teams	can	allocate	
their	resources	more	effectively,	focusing	on	high-impact	
vulnerabilities.

Enhanced Reporting	Deduplication	provides	more	mea-
ningful and manageable reports, making it easier for stake-
holders to understand the security posture and make informed
decisions.

5.3 Patch Validation: mJS

During	the	software	testing	phase,	the	aforementioned	
development	team	identified	a	potential	security	vulnerability.	
One	of	the	automatically	generated	test	cases	confirmed	that	
the	vulnerability	poses	a	security	risk.	The	team	was	able	to	
develop	a	corresponding	patch	thanks	to	the	feedback	provi-
ded by the IntelliSecTest solution regarding the code location
responsible	for	the	vulnerability.	The	effectiveness	of	the	patch	
in	fully	eliminating	the	vulnerability	is	yet	to	be	determined.	It	
is possible that the patch may only address the issue on a parti-
cular	input	or	configuration	of	the	system.

To	ensure	the	comprehensive	elimination	of	the	vulnerability	by	
the security patch, IntelliSecTest offers assistance in the Patch
Validation	workflow.	In	this	phase,	new	test	cases	that	trigger	

the	vulnerability	in	the	unpatched	system	are	generated	and	
then	executed	on	the	patched	version.	This	process	ensures	
that	the	patch	not	only	addresses	the	vulnerability	identified	by	
the	initial	test	case	that	exposed	the	vulnerability.

To	demonstrate	the	process	of	Patch	Validation,	we	conducted	
additional	experiments	on	mJS.	These	experiments	analyzed	a	
segmentation fault11,	which	was	supposed	to	be	fixed	the	cur-
rent	version	[or	release].	In	a	period	of	24	hours,	the	IntelliSec-
Test	solution	was	able	to	generate	64	test	cases	that	triggered	
the	bug	in	the	unpatched	version.	Of	the	64	test	cases,	one	
also	uncovered	a	vulnerability	in	the	patched	system.	This	
detection demonstrated that the initial patch did not fully
address	the	underlying	security	issue.	By	revealing	that	the	
vulnerability	was	not	fully	fixed,	IntelliSecTest	demonstrates	its	
power	for	supporting	robust	and	thorough	security	measures.	
This	proactive	approach	not	only	improves	the	quality	of	pat-
ches	but	also	significantly	enhances	the	security	and	reliability	
of the application.

The	IntelliSecTest	solution	offers	a	comprehensive	set	of	bene-
fits	that	streamline	the	patch	management	process,	enhance	
security, and reduce operational costs:

Reduced Number of Patch Revisions
The	validation	of	security	patches	has	the	effect	of	reducing	
the	number	of	patch	revisions	required.	By	thoroughly	valida-
ting patches before deployment, the IntelliSecTest solution
ensures	that	patches	are	effective	and	reliable	from	the	first	
release.	IntelliSecTest’s	patch	validation	saves	valuable	time	and	
resources	by	minimizing	the	need	for	subsequent	revisions	and	
updates. For instance, the incomplete patch for mJS’ segmen-
tation	fault	could	have	been	found	directly	during	the	original	
patch	development	[or	validation]«.

11 https://github.com/cesanta/mjs/issues/249

Figure 13: Crash deduplication by CrashWalk and IntelliSecTest

System Hardware Consumption for Different Workflows.

Workflow

Testing	proprietary	software	(mJS)

Testing 3rd party dependency (libTiff)

Patch	validation

CPU Cores

5

5

7

Memory (GB)

11

10

12

Table 3: System hardware consumption for different workflows

21

Case Studies

No Need to Design and Implement Test Cases
The automated creation and execution of 64 test cases that
trigger	the	vulnerability	significantly	reduces	the	reliance	on	
manually	written	test	cases.	This	automation	not	only	accelera-
tes	the	testing	process	but	also	guarantees	comprehensive	and	
uniform	testing,	which	is	vital	for	identifying	and	addressing	
alternative	inputs	that	could	trigger	the	vulnerability.

Early Feedback on Patch Quality
One	of	the	key	benefits	of	IntelliSecTest’s	Patch	Validation	
solution	is	the	early	feedback	it	provides	on	patch	quality.	By	
integrating	seamlessly	with	development	workflows,	Intelli-
SecTest	provides	immediate	insights	into	the	effectiveness	and	
stability	of	patches,	offering	valuable	feedback	that	can	be	
incorporated	into	the	development	process.	This	early	feed-
back	loop	enables	developers	to	implement	necessary	adjust-
ments before full deployment, thereby ensuring higher quality
and more reliable patches.

Reduced Attraction of Attackers
Effective	patch	validation	and	timely	deployment	reduce	the	
window	of	opportunity	for	potential	attackers.	By	ensuring	
the	robustness	and	vulnerability-free	status	of	patches	prior	to	
release, IntelliSecTest helps to mitigate the risk of exploits and
enhance	the	overall	security	posture	of	your	systems.

Lower Patch Deployment Costs
IntelliSecTest	optimizes	the	entire	patch	management	process,	
resulting	in	lower	deployment	costs.	By	reducing	the	number	
of	patch	revisions,	manual	test	cases,	and	the	time	required	for	
root	cause	identification,	IntelliSecTest	enables	a	more	efficient	
and	cost-effective	deployment	process.	This	not	only	saves	
direct	costs	induced	by	development	but	also	minimizes	the	
indirect	costs	associated	with	system	downtime	and	security	
breaches.

5.4 Resource Consumption

Considering the resource consumption of security testing tools
is	critical	for	optimizing	performance	and	ensuring	the	efficient	
integration	into	development	environments.	In	Table	3,	we	pre-
sent	the	relevant	metrics	of	the	IntelliSecTest	solution,	focusing	
on CPU and memory usage during the testing process of the
previously	described	case	studies.	By	showcasing	these	metrics,	
we	provide	a	comprehensive	view	of	the	resource	demands	
associated	with	the	IntelliSecTest	solution.	This	information	
helps	developers	and	organizations	to	estimate	the	hardware	
consumption of the IntelliSecTest solution, ensuring a balan-
ce	between	thorough	security	testing	and	optimal	resource	
utilization.

One	of	the	key	advantages	of	the	IntelliSecTest	solution	is	
its	adaptability	to	varying	resource	availability.	The	resource	
consumption can be restricted based on the system’s capaci-
ty,	ensuring	that	the	testing	process	does	not	overwhelm	the	
development	environment.	This	flexibility	allows	to	use	the	
IntelliSecTest	solution	both	on	high-end	servers	and	on	more	
resource-constrained machines (see minimal system require-
ments in Table 1).

6. Summary

The IntelliSecTest solution implements a highly effective approach to
 security testing that helps manufacturers to meet the requirements from
forthcoming legislation, such as the CRA.

22

Summary

The IntelliSecTest solution offers a cutting-edge and highly
effective	approach	to	application	security	testing.	This	solution	
helps manufacturers to meet regulatory requirements as set
out in legislation such as the CRA. IntelliSecTest automates the
process	of	identifying	security	vulnerabilities	in	both	proprie-
tary and 3rd	party	code	and	effectively	supports	remediating	
them,	leading	to	accelerated	bug	fixes	and	comprehensive	
security	coverage.	Integration	into	common	IDEs	allows	develo-
pers	to	be	precisely	alerted	to	potential	weaknesses	in	the	
code.	By	precisely	identifying	vulnerabilities	through	compre-
hensive	static	and	dynamic	analyses,	as	well	as	targeted	fuzz	
tests,	the	IntelliSecTest	solution	offers	an	efficient	and	tho-
rough	security	assessment.	The	solution	allows	for	the	rapid	
and	effective	development	of	security	patches	and	provides	
development	teams	with	specific	information	on	vulnerability	
locations	in	the	code.	The	Patch	Validation	workflow	within	
IntelliSecTest	ensures	that	developed	security	patches	are	
subjected	to	rigorous	testing	to	eliminate	identified	vulnerabi-
lities	without	introducing	new	ones,	thus	maintaining	soft-
ware	integrity	and	security.	Moreover,	IntelliSecTest	not	only	
improves	the	speed	and	efficacy	of	security	testing	but	also	
considerably reduces the risk of security breaches.

IntelliSecTest	can	be	easily	integrated	into	existing	CI	environ-
ments like GitLab. The IntelliSecTest solution helps to reduce
the	number	of	patch	revisions,	automate	test	case	genera-
tion,	accelerate	vulnerability	identification,	and	provide	early	
feedback	on	patch	quality.	By	integrating	into	CI	environments,	
IntelliSecTest	offers	a	flexible	and	extensible	solution	that	helps	
manufacturers	optimize	their	security	processes	and	meet	
regulatory	requirements	effectively.

By	adopting	innovative	security	testing	tools	and	methodolo-
gies,	organizations	can	strengthen	their	security	posture,	adapt	
to	regulatory	changes	and	stay	ahead	in	the	ever-evolving	
cyber-security	landscape.	IntelliSecTest	is	the	tool	which	helps	
you meet those demands.

23

Imprint

Imprint

Fraunhofer Institute for
Open Communication Systems FOKUS
Kaiserin-Augusta-Allee 31
10589 Berlin, Germany

The	IntelliSecTest	solution	was	developed	in	a	joint	research	
project by the four Fraunhofer institutes IEM, AISEC, FKIE,
and	FOKUS.	The	work	was	supported	by	the	Fraunhofer	
	Internal	Programs	under	Grant	No.	PREPARE	840	231.

Publisher
Fraunhofer Institute for
Open Communication Systems FOKUS
Kaiserin-Augusta-Allee 31
10589	Berlin,	Germany

Authors
Eric Bodden, Matthias Meyer, Sriteja Kummita,
Fabian Schiebel, Lucas Briese (Fraunhofer IEM)

Julian Horsch, Konrad Hohentanner, Patrick Herter,
Vincent Alhrichs (Fraunhofer AISEC)

Elmar Padilla, Martin Clauß (Fraunhofer FKIE)

Martin Schneider, Ramon Barakat, Roman Kraus,
Fabian	Jezuita	(Fraunhofer	FOKUS)

Design
Ivy	Kunze

Illustration
Simone	Geppert-Dahlhorst

Project Partners

Fraunhofer	Institute	for	Mechatronic	Systems	Design	(IEM)

Fraunhofer Institute for Applied and Integrated Security
(AISEC)

Fraunhofer Institute for Communication, Information
 Processing and Ergonomics (FKIE)

Fraunhofer Institute for Open Communication Systems (FOKUS)

Picture Credits
title:	istock	/	Laurence	Dutton	
page	5:	istock	/	narvikk
page 16: istock / gorodenkoff
all other graphics by Fraunhofer

© Fraunhofer FOKUS,
Berlin	2024

Contact

Prof. Dr. Eric Bodden

Director Software Engineering and IT Security

Phone +49 5251 5465-150

eric.bodden@iem.fraunhofer.de

Fraunhofer IEM

Zukunftsmeile 1

33102 Paderborn, Germany

www.iem.fraunhofer.de

Dipl.-Inform. Martin Schneider

Head of Testing, Quality Engineering

Phone +49 30 3463-7383

martin.schneider@fokus.fraunhofer.de

Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31

10589 Berlin, Germany

www.fokus.fraunhofer.de

mailto:eric.bodden%40iem.fraunhofer.de?subject=
https://www.iem.fraunhofer.de/
mailto:martin.schneider%40fokus.fraunhofer.de?subject=
https://www.fokus.fraunhofer.de/

