
Intelligent Application
Security Testing

3

Contents

1.	 Management Summary �  4

2.	 Introduction �  6

3.	 Background �  7

4.	 The IntelliSecTest Solution �  9
4.1	 Features and Expert Tools �  9
4.2	 Workflow Support �  10
4.3	 Integration �  14
4.4	 Technical Architecture and System Requirements �  14

5.	 Case Studies �  17
5.1	 Testing Proprietary Code: mJS �  17
5.2	 Testing 3rd Party Code: libTiff �  19
5.3	 Patch Validation: mJS �  20

6.	 Summary �  22

Imprint �  23

Contents

4

Management Summary

Manufacturers of products that contain software and can have
a data connection to another device or network need to imple-
ment proactive security measures to ensure compliance with
regulatory requirements and the changing threat landscape.
The necessity for more efficient and effective security testing
methods and tools is underscored by recent security incidents
and by regulatory acts such as the Cybersecurity Act (CSA)
and the Cyber Resilience Act (CRA), which are driven by the
European Union. In accordance with the CRA, manufacturers
of products with digital elements intended for sale on the
European market – which, in essence, encompasses all digital
products – are subject to new obligations including, among
others, to
	– identify vulnerabilities through effective and regular tests

and
	– address and remediate them without delay.

This encompasses not only proprietary code created by manu-
facturers but also (open-source) software they integrate. While
these new responsibilities may be seen as an additional burden
for manufacturers, they offer a significant opportunity to
enhance supply chain security. To fully leverage this opportu-
nity, manufacturers must have effective tools offering a high
degree of automation and skilled employees to operate them
and process their results.

IntelliSecTest is an innovative solution that helps manufacturers
to address the challenges posed by both regulations and the
threat landscape. IntelliSecTest provides effective assistance in
applying suitable testing methods for C programs to ensure
compliance with regulatory requirements, such as the CRA.

The IntelliSecTest solution provides support to organizations
and their development and testing teams in their workflows:
	– security testing 3rd party code, e.g., open source software

(OSS)
	– security testing proprietary code, developed by the

manufacturer
	– development of effective security patches for identified
vulnerabilities.

By automating different steps of workflows with a highly
automated, configurable and extensible set of deeply integra-
ted expert tools, IntelliSecTest relieves employees from complex
tasks, thus increasing their efficiency and reducing costs.
Without IntelliSecTest, these tasks often require expert know-
ledge, further straining this limited, valuable resource. The
IntelliSecTest solution enables testers to perform these tasks
efficiently and effectively from the outset, eliminating the need
for lengthy training periods. Moreover, development teams get
precise information about the location of vulnerabilities in C
code and receive assistance in the debugging process through
test cases, which significantly reduces the time required to
comprehend and resolve identified issues. The IntelliSecTest
solution presents all the results directly in the working environ-
ment, through integration with major integrated development
environments (IDEs), such as Visual Studio Code (VS Code),
using standardized interfaces.

1.	 Management Summary

Need for proactive security measures for manufacturers of digital products
to meet regulatory requirements and address evolving threats, particularly
in light of the Cyber Resilience Act (CRA).

IT software failure paralyzed airports in July 2024

Key Provisions of the Cyber Resilience Act (CRA)
Pertaining to Security Testing

The CRA, enacted by the European Parliament in
March 2024, introduces several new obligations
for manufacturers regarding the management of
vulnerabilities in products with digital elements.
These obligations significantly impact security
testing activities:

1. Manufacturers of products with digital
elements must identify and document
vulnerabilities.

2. Manufacturers are required to address and
remediate vulnerabilities promptly, including
the provision of security updates.

3. Manufacturers must conduct effective and
regular tests and reviews of the security of
products with digital elements.

To meet these new requirements, it is essen-
tial that manufacturers enhance their security
testing processes and activities. Although the
CRA will not take effect until 2027, it is crucial for
manufacturers to begin adapting their processes
and upgrading their tool landscape immediate-
ly to ensure compliance when the regulation is
enforced.

5

6

Introduction

The recent sophisticated supply chain attack attempts on
Linux via xz utils, along with the introduction of the CSA and
the CRA, underscore the necessity for more effective security
testing methodologies and tools. These tools should streamline
processes and deliver reliable, qualified, and quantified results
that meet the demands of emerging regulations.

While previous regulations, such as NIS, have focused on
critical infrastructure, more recent and upcoming regulations
also apply beyond that sector and target specific technologies,
such as connected digital products in the case of the CRA. The
CRA imposes new responsibilities on manufacturers, requiring
a focused on effective and regular tests and addressing and
remediating vulnerabilities without delay. These requirements
extend beyond proprietary code to include integrated open
source and 3rd party software, thereby broadening the scope of
manufacturers’ security-related activities and associated costs.
Given that security is often seen as a cost rather than a compe-
titive advantage, there is an increasing need among manufac-
turers to improve the efficiency of their security measures.

Moreover, manufacturers are now required to demonstrate
their compliance efforts, particularly in the event of a security
breach, to mitigate liability for resulting damages and potential
violations of privacy rights. This requirement not only reinforces
the importance of robust security practices and also highlights
the critical need for transparency and accountability in the face
of regulatory scrutiny.

The IntelliSecTest solution effectively addresses regulatory
requirements by providing comprehensive coverage of several
key areas. It significantly reduces the manual effort involved
in security testing through advanced automation, allowing for
the swift and efficient identification of security vulnerabilities.

IntelliSecTest provides reliable and quantified results, enabling
manufacturers to make informed decisions and take targeted
actions to meet the necessary security standards. To meet
the demands of new regulations such as the CSA and the
CRA, IntelliSecTest ensures comprehensive compliance by
assisting manufacturers in the identification, management,
and documentation of vulnerabilities. This encompasses not
only proprietary code but also integrated open-source and
3rd party software, ensuring a thorough approach to security
in line with evolving regulatory expectations. Furthermore, it
enables manufacturers to provide evidence of their compliance
activities.

Additionally, in the event of uncovered vulnerabilities, Intelli-
SecTest facilitates the validation of developed security patches.
By rigorously testing the patches, IntelliSecTest ensures that
they effectively eliminate the identified security issues without
introducing new vulnerabilities, thereby maintaining the integ-
rity and security of the software. Therefore, IntelliSecTest not
only meets the immediate need for effective security testing
but also ensures long-term compliance with evolving regulati-
ons, making it an indispensable tool for manufacturers naviga-
ting the complex landscape of cybersecurity requirements.

2.	 Introduction

Security represents a dynamic challenge, influenced not only by a
continuously evolving threat landscape but also by changing regulatory
requirements.

01101001
10100111
10011101
01110100

?
?

Static Analysis Fuzzing

Approaches

Advantages
▪ High path coverage
▪ Good presentation of

results
▪ Very few false warnings

▪ Requires approximation
▪ High number of false

warnings (false positives)

▪ Random path coverage
▪ Poor results presentationDrawbacks

}

7

Background

Static program analysis is used for determining interesting pro-
perties of a given software program, such as the absence of
security vulnerabilities, without executing the program. Static
analysis for finding security vulnerabilities is commonly referred
to as “Static Application Security Testing” (SAST).
One can distinguish different classes of static analysis approa-
ches, ranging from formal methods like model checking, over
techniques of abstract interpretation, to data-flow analysis.
While static analysis can achieve full path coverage, it might
report false positives, i.e., warnings about vulnerabilities that
do not actually occur when running the program. Therefore,
static analysis cannot prove the presence of errors (due to false
positives), but only their absence. Discriminating the true posi-
tives, actual vulnerabilities that need to be fixed, from these
false positives is a tedious effort that is usually done manually,
which makes static analysis less efficient.

In contrast, dynamic analysis in security testing involves eva-
luating a software system or component during its execution.
This method is used to detect security vulnerabilities that may
not be evident through static analysis. Dynamic analysis can
identify issues such as runtime errors, memory leaks, and other
security threats that emerge during the application’s execution.

The most prevalent technique applied in security testing is fuz-
zing, categorized under “Dynamic Application Security Testing”
(DAST). Fuzzing, or fuzz testing, is a dynamic software testing
technique that involves automatically generating and inputting
(semi-)random, malformed, or unexpected data into a software
system to uncover coding errors and security-critical bugs. The
primary objective of fuzzing is to trigger crashes, memory leaks,
or unhandled exceptions that indicate potential vulnerabilities.

3.	 Background

Static and dynamic analysis tools are currently utilized in the domain of
cybersecurity quality assurance. While both categories serve distinct purpo-
ses, they possess complementary strengths and weaknesses that can limit
their overall effectiveness and efficiency when integrated in a naive way.

Figure 1: Strengths and weaknesses of static analysis and fuzzing

8

Background

However, fuzzing is constrained by limited path coverage,
necessitating a substantial amount of time to adequately
cover an entire program. This requirement can impede short
development cycles. Fuzzing typically produces a large number
of crashing inputs that have the same underlying bug as their
root cause. Analyzing such duplicate crashing inputs occupies
valuable resources.

Furthermore, this large number of duplicates makes it
difficult to get an overall picture of the security posture
of a program and increases the effort in processing these
results, even more since they are often presented in a way
that makes it hard to grasp them. Even further, specific test
drivers require specific knowledge of the employed fuzzing
tool when testing libraries.

Since using static analysis or dynamic analysis tools only is
insufficient, IntelliSecTest implements a hybrid analysis – also
referred to as “Interactive Application Security Testing” (IAST)
– that combines and integrates SAST and DAST (see Figure 2).
This approach is unique on the market, even though there are
number of market players that provide static analysis tools,
fuzzing tools or even both.

The market analysis categorizes tool providers based on their
offerings, indicating that they typically supply either static ana-
lysis tools (represented by dots in the yellow area) or fuzzing
tools (represented by dots in the blue area). Some providers
have expanded their portfolios to include tools from the other
category, potentially positioning them to offer hybrid analysis
tools in the future (green dotted circles). However, as of the
writing of this document, no provider offers a hybrid analysis
tool.

Notably, one provider is known to be developing such a tool,
although it is designed for Java applications rather than C
applications.

01101001
10100111
10011101
01110100

?
? }

Figure 2: Hybrid analysis, also referred to as IAST, integrates SAST and DAST

4.	 The IntelliSecTest Solution

Advanced application security testing tool designed to help
manufacturers identify and remediate security vulnerabilities in both
proprietary and 3rd party code.

9

The IntelliSecTest Solution

The CRA imposes new vulnerability handling requirements on
manufacturers. These requirements encompass effective and
regular testing, as well as the identification and remediation of
vulnerabilities, extending beyond proprietary code to include OSS.
This impacts the processes of development and testing teams.

The IntelliSecTest solution supports the development and
testing teams in their efforts to meet their new responsibilities
in three workflows:
	– Security testing 3rd party code, e.g., OSS
	– Security testing proprietary code, developed by the

manufacturer
	– Development of effective security patches for identified
vulnerabilities.

4.1	 Features and Expert Tools

The features offered by the IntelliSecTest solution are directly
or indirectly supporting these workflows.

	– Detection of memory corruption vulnerabilities in
C applications. IntelliSecTest is able to identify critical
vulnerabilities in C code, i.e., buffer overflow, double free,
and use after free, of which buffer overflows and use after
free still belong to the most critical vulnerabilities, according
to CWE Top Ten 20231 and CWE Top 25 Most Dangerous
Software Weaknesses 20232.

	– Verified vulnerabilities, including proofs. All findings
IntelliSecTest reports are confirmed vulnerabilities, false
positives, as known from other tools, are excluded. A test
case for analysis and debugging purposes accompanies
each confirmed vulnerability.

1	 https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html

2	 https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

	– Proof or estimation on the absence of vulnerabilities
In the course of the verification, IntelliSecTest discrimina-
tes true vulnerabilities from false positives. However, it
may happen that a vulnerability candidate from the static
analysis cannot be proven to be a false positive. In that
case, IntelliSecTest can report a statistical estimation that
the vulnerability candidate is a false positive, which might
be useful when justifying the testing efforts against third
parties, e.g., authorities.

	– Fuzz driver generation for libraries. Using its Fuzz Driver
Generation technology, IntelliSecTest completely automates
the task of writing fuzz drivers necessary to conduct library
fuzzing.

	– Deduplication of fuzzing results. With its advanced
deduplication techniques, IntelliSecTest reliably identifies
duplicates and thus, presents only consolidated test reports
to the development and test teams.

	– Validation of security patches. Through its advanced test
generation techniques, IntelliSecTest provides a comprehensive
evaluation of security patches, supporting developers through
test cases that show the extent to which vulnerabilities can be
triggered and potential weak points in a given security patch.

	– Integration with major interactive development
environment (IDE). IntelliSecTest seamlessly integrates with
developers’ most common user interface, the IDE.

	– Easily scalable, configurable, and extensible. Through
its container infrastructure using technologies like Kuberne-
tes and Docker®, IntelliSecTest scales to nearly any infras-
tructure. Furthermore, it can be easily extended with new
tools. Through its simple configuration, the integration of
different expert tools is done in a few moments.

The IntelliSecTest solution automates the working steps of each of
these workflows through a set of deeply integrated expert tools:
	– Fuzz Driver Generation automatically generates fuzz
drivers for library fuzzing.

	– Library Fuzzing employs automatically generated fuzz
drivers from Fuzz Driver Generation to perform library
fuzzing, using AFL++.

Integration with major IDEs for developers

Workflow 1: Testing proprietary code

Workflow 2: Testing 3rd party code

Validation of security
patches

Fuzz driver generation for
libraries

Deduplication of fuzzing
results

Workflow 3: Developing a security patch

Easily scalable, configurable, and extensible

Detection of buffer overflows,
double free, use after free

vulnerabilities in C applications

Verified vulnerabilities
including proofs (executable

test cases with inputs)

Proof or estimation on the
absence of vulnerabilities

Figure 3: Overview of IntelliSecTest features

Figure 4: Workflow and supporting IntelliSecTest expert tools for testing proprietary and 3rd party code

Directed Fuzzing

Fuzz Driver Generation

Verification of SA Findings

Static Analysis (SA)

1. Setting up Test Environment 2. Testing 3. Test Evaluation & Reporting

Library Fuzzing Crash Deduplication

IDE Reporting

10

	– Static Analysis performs data flow analyses on the source
code to identify potential vulnerabilities.

	– Verification of SA Findings employs advanced constraint
solving techniques to discriminate true positives and false
positives from the static analysis. It generates executable
test cases as proofs for the true positives.

	– Directed Fuzzing investigates code regions through direc-
ted fuzzing for vulnerabilities, using AFLGo.

	– Crash Deduplication identifies duplicate crashes through
stack trace analysis to report only unique bugs.

	– Patch Validation generates a diverse test suite to trigger
a vulnerability to evaluate the efficacy of a security patch.

	– IDE Reporting presents the test results after deduplica-
tion in the IDE, within the source code and in the corre-
sponding widgets.

4.2	 Workflow Support

In the following, we present three workflows which would
largely benefit from innovations of the IntelliSecTest solution.

These are:
	– Testing proprietary code
	– Testing 3rd party code, e.g., OSS
	– Developing a security patch for a given vulnerability

In the following, we will present the workflows from a high
level perspective and discuss how the capabilities of the Intel-
liSecTest solutions support them in detail. For each workflow,
the IntelliSecTest solution builds upon established security tes-
ting tools, such as AFL and AddressSanitizer (ASan), and builds
on the one hand a wrapper and on the other hands integrates
them into a turnkey solution that developers without expert
knowledge in security testing and experience in using respecti-
ve tools can use out of the box.

Static Analysis

True
Positive

False
Positive

Static Code
Analysis

Directed
Fuzzing

Test Case
Generation

Test Case
Execution

Dynamic Analysis

IDE

Vulnerability
candidates

Runtime
Information

SUT

Figure 5: Overview of the vulnerability detection process for proprietary code

11

Testing Proprietary Code A common use case is to test
proprietary code, i.e., code developed by the manufacturer, for
vulnerabilities. It consists of three steps, as shown in Figure  4.
First, the developers or tester must set up a test environ-
ment that includes testing tools and the system under test
(SUT). This step is usually done manually, and requires a deep
understanding of the fuzzing tool. This is where IntelliSecTest
steps in and completely automates this step, relieving deve-
lopers and testers of this task, through its expert Fuzz Driver
Generation. As a result, the subsequent Library Fuzzing can be
started automatically. The second step of the this workflow –
testing – is done by the static analysis and the verification of its
results. IntelliSecTest’s Static Analysis (SA) expert tool automa-
tically identifies vulnerability candidates in the source code and
propagates this information to the Verification of SA Findings
expert tool, which processes this information and discriminates
between true and false positives using advanced constraint
solving techniques. If this is not possible, Directed Fuzzing
dynamically analyzes the source code, which is suspected of
containing the vulnerability.

As shown in Figure 5, IntelliSecTest performs static analysis,
such as deep data-flow analyses, to compute potential vulne-
rability candidates and to extract static information from the
SUT regarding them. In addition, it runs directed fuzzing in the
background to incrementally enhance the static analysis results
through dynamic analysis. To avoid reporting false warnings,
the IntelliSecTest solution verifies all vulnerability candidates by
executing small, fine-grained test cases directed towards the
vulnerability in question that are automatically generated. This
way, IntelliSecTest filters out vulnerability candidates that are
false warnings or cannot be exploited.

The test results are then subjected to Crash Deduplication, so
that any vulnerability identified is only reported only once and
directly presented within the developer’s working environment
via IDE Reporting. A test case is attached to each reported vul-
nerability, completing the Test Evaluation & Reporting phase.
This allows developers to understand, analyze, and debug a
vulnerability.

Testing 3rd Party Code As software products become increa-
singly complex, they are composed of many components of
varying origins, e.g., proprietary code, OSS, and contractor-
supplied artifacts. To gauge the security of such software, it is
crucial to test 3rd party code to eliminate supply chain vulne-
rabilities and to meet regulatory requirements, such as those
from the CRA. The workflow of testing 3rd party code applies,
for example, when a developer wants to integrate an OSS
for a new functionality of the software product or if a deve-
loper is tasked to evaluate the security of already integrated
components.

Building on the previous discussion of testing proprietary code
for vulnerabilities, the workflow for testing 3rd party code
follows a similar three-step process, as shown in Figure 4. First,
the test environment must be set up, which includes configu-
ring the necessary test tools and the SUT. Additionally, test
adapters are required to connect the test tool to the SUT. This
requires a lot of of manual effort and requires a lot of time,
since in most cases the tester is not familiar with the code to
be tested. In contrast to the manual effort typically required in
this phase, IntelliSecTest utilizes its Fuzz Driver Generation tool
to automate the setup, significantly simplifying the process for
developers and testers.

Patch Validation

1. Reproduce 2. Localize

Verification of SA Findings

Static Analysis (SA)

3. Bugfix 4. Validate Bugfix

Analyze Repair Test

5. Regression Test

Directed Fuzzing

Patch Validation

IDE Reporting

to be done by the
developer

IDE Reporting

IDE Reporting

Verification of SA Findings

Static Analysis (SA)

Figure 7: Workflow and supporting IntelliSecTest expert tools for patch validation

12

The IntelliSecTest Solution

Figure 6 displays how IntelliSecTest supports and automates this
workflow. First, IntelliSecTest analyzes the target library for pos-
sibly vulnerable entry points and passes them to the Fuzz Driver
Generation. The Fuzz Driver Generation combines this informa-
tion with the library and generates a fuzz driver, a dedicated
program that exercises the library and, thus, makes it fuzzable.
The next step is to compile the fuzz driver and use it with a
modern greybox fuzzer, AFL++. During fuzzing, every detected
crash is passed to the Crash Deduplication for post-processing.
Finally, IntelliSecTest reports the deduplicated crashes back to
the user. Static Analysis and the verification of its results also
identify further vulnerabilities, similar to the first workflow.

While this workflow is technically identical to the first, it has
one major difference for the manufacturer: the developer
is not familiar with the code. This can be a major obstacle
to effective and efficient security testing, and can pose a

significant risk to manufacturers as they deal with the security
of integrated 3rd party products. This risk stems from the fact
that open source projects are not accountable for vulnerabi-
lities in their software, that it is often unknown whether and
to what extent the security of the OSS has been verified, and
whether this process conforms to standards and best practices.
In fact, even popular, widely used OSS is regularly affected
by critical vulnerabilities, such as Heartbleed, ShellShock, and
Log4Shell.

Patch Validation The Patch Validation addresses the CRA’s
requirement that manufacturers must provide patches for iden-
tified vulnerabilities in a timely manner. IntelliSecTest facilitates
this process to enable developers to test code that is intended
to address a vulnerability identified by the developer or repor-
ted by security researchers.

Pre-Processing Greybox Fuzzing Post-Processing

Static Code
Analysis

Fuzz Driver
Generation

Compiler Fuzzing
Engine

Deduplication

Crash
DriverLibary

Crashes

Figure 6: Overview of the 3rd party library testing process

Patch ValidationVulnerability Analysis

Directed
Fuzzer

Test Suite
Execution

Test
Cases

no

yes

?
Failed Patch

Complete Patch
Vulner-
ability

Unpatched
SUT

Test
Suite

Patched
SUT

Vulnerability
triggered by
any test case?

Figure 8: Overview of security patch validation process

13

The IntelliSecTest Solution

Figure 7 illustrates a comprehensive patch validation workflow
supported by IntelliSecTest, structured into three main stages:
Analyze, Repair, and Test. Each stage of the workflow has
specific tasks and utilizes specialized tools to ensure compre-
hensive patch validation and efficient resolution of security
vulnerabilities. The initial step of the analysis stage is to repro-
duce the reported vulnerability to confirm its existence and
understand its impact. This step is undertaken to accurately
reproduce the conditions under which the vulnerability occurs.
As with the previous workflow, various expert tools can be
employed to assist with the localization of the vulnerability. In
the Repair stage, the developers implement a security patch
for the identified vulnerability. The results from the preceding
stage provide essential input to the patch development pro-
cess. This includes comprehensive data about the vulnerability,
such as its location in the code and the test cases generated in
the Reproduce stage that trigger the vulnerability. In the Test
stage, the Patch Validation expert tool is used to confirm that
the patch is effective and fully closes the previous vulnerability
and that the applied security patch resolves the issue without
introducing new problems. If the vulnerability has not been
fully closed, the IDE reporting shows the open vulnerability.
Finally, the IntelliSecTest expert tools are used to perform
Regression Testing to check the codebase for any remaining or
new vulnerabilities.

By providing the unpatched code of the SUT along with an
input that triggers the known vulnerability, the IntelliSecTest
solution generates a test suite that triggers this vulnerability in
many different ways. Static analysis helps to identify the speci-
fic location of the vulnerability in the source code. The develo-
per can use both information to efficiently develop a security
patch and validate it through the generated test suite. Once
the patch has been confirmed to be effective and not overfit to
a specific proof of concept, the IntelliSecTest solution performs

further regression tests to prevent that further vulnerabilities
are introduced by the patch. Figure 8 shows the IntelliSecTest
solution for the security patch validation (Workflow 3) and the
involved IntelliSecTest expert tools.

The Patch Validation uses directed grey-box fuzzing to genera-
te more test cases that trigger the vulnerability in the unpat-
ched version of the SUT. These new test cases differ in their
code coverage profile from the one provided by the develo-
pers, meaning that they will reach other locations in the code
when executed. This way, the new test cases have the poten-
tial to trigger the bug in spite of the patch, since an incomplete
patch might not consider all possible paths through the code
that lead to its vulnerable part. The generated test cases are
then used as input for the patched SUT. Address-sanitation
is used to check if the vulnerability can be triggered and thus
reveals a blind spot in the patch.

14

The IntelliSecTest Solution

4.3	 Integration

4.3.1 IDE: VS Code
The IntelliSecTest tool is integrated into VS Code3 to inform
developers about security vulnerabilities during the develop-
ment. Using MagpieBridge4 and the Language Server Protocol
(LSP)5, IntelliSecTest provides seamless and extensible integra-
tion with most IDEs. Therefore, the integration into develop-
ment environments such as VS Code, IntelliJ IDEA products
and Eclipse works out-of-the-box.

Figure 9 shows the integration of IntelliSecTest into VS Code.
Static analysis results are initially reported as vulnerability
candidates (indicated by a blue squiggly underline, as shown on
the right side of the image and by an information symbol in the
problems window) until they are confirmed. Once the analysis
results are confirmed, IntelliSecTest raises the severity to an
error (red squiggles, shown in the left side of the figure and a
cross symbol in the problems window). Differentiating severity
levels of warnings within the IDE allows the developers to hide
unconfirmed vulnerabilities and thus, prioritize fixes according-
ly. In addition, developers can interact with the diagnostics
to navigate through the vulnerability path reported by Intelli-
SecTest’s analysis tool (see problems window in Figure 9): The
integration of IntelliSecTest with VS Code is enabled by a simple
configuration file that is specified by the user. This file contains
information about the compilation commands and the connec-
tivity information (URL and port) of the IntelliSecTest cluster.

3	 https://code.visualstudio.com/

4	 https://github.com/MagpieBridge/MagpieBridge

5	 https://microsoft.github.io/language-server-protocol/

4.3.2 CodeChecker
CodeChecker6 is a web application that runs various static code
analysis tools and displays their results. It can display the results
from IntelliSecTest in real time as they occur. It is convenient to
get an overview of all the results of the analysis and, e.g., plan
a strategy to solve the problems. For each Continuous Integra-
tion (CI) run, a link can be generated that displays the analysis
results. Figures 10 and 11 show a screenshot of CodeChecker
with results generated by IntelliSecTest for a simple demo
example.

4.4	 Technical Architecture and System
Requirements

IntelliSecTest is built on the microservices architecture para-
digm, which structures an application as a collection of
loosely coupled services, each of which implements different
functionality. IntelliSecTest’s concrete implementation uses
Docker® and Kubernetes to realize those design goals, among
other technologies. Docker®, a platform used for automating
the deployment, scaling, and management of applications, is
leveraged to implement the microservices. By encapsulating
each service in a Docker container, the services can be tested,
deployed, scaled, and updated independently. Kubernetes is an
open-source platform for managing containerized workloads
and services, and provides a robust framework for running dis-
tributed systems resiliently. It handles the scaling and failover
of applications, and offers various deployment patterns. It is
also highly configurable so that IntelliSecTest can be deployed

6	 https://codechecker.readthedocs.io/en/latest/

Figure 9: Example of IDE integration via LSP. Confirmed vulnerabilities have red error squiggles instead of the informational
blue squiggles. The vulnerability path can be used for navigation, as shown with the highlighted source tree at the bottom.

https://microsoft.github.io/language-server-protocol/
https://codechecker.readthedocs.io/en/latest/

15

The IntelliSecTest Solution

in different scenarios with different hardware (e.g., on a single
server or a cluster of servers). One of the standout features of
the IntelliSecTest solution is its extensibility and flexibility. The
innovative design allows users to seamlessly add new micro-
services tailored to their specific needs, whether for analysis,
execution, reporting, or other essential tasks. By empowering
developers to integrate additional functionalities effortlessly,
IntelliSecTest ensures that other security testing frameworks
can evolve and adapt. This adaptability not only streamlines
the testing processes but also enhances the overall efficiency
and effectiveness of your security initiatives.

With the ability to run multiple analyses in parallel, the Intel-
liSecTest solution delivers efficiency. This powerful capability
ensures that multiple analysis, execution, and reporting tasks
can be performed simultaneously, dramatically reducing overall
testing time and accelerating your development cycle. In Intel-
liSecTest there is also experimental support for CI via GitLab.
CI is a development practice where developers integrate their
code into a shared repository frequently, preferably several
times a day.

Figure 10: CodeChecker shows a list of crashes to get a fast overview. The crashes can be sorted and filtered.

Figure 11: CodeChecker shows a crash that has been reported by ASan within the IntelliSecTest solution.
It also shows a stack trace and highlights the corresponding lines of the source code.

16

The IntelliSecTest Solution

Each integration can then be verified by automated builds
and tests. The primary goal of CI is to catch and address bugs
faster, improve software quality, and reduce the time to valida-
te and release new software updates. This is where IntelliSec-
Test can be used for nightly or merge request related in-depth
analysis of the code. For GitLab we provide a .gitlab-ci.yml
file that starts the analysis with IntelliSecTest. The configura-
tion can be adjusted to only run at certain points of time, on
merge requests and also an analysis timeout can be set to limit
resource usage (such as time, CPU, RAM, etc.).

Thanks to the microservice architecture, IntelliSecTest’s
system hardware requirements can be efficiently scaled. The
minimum requirements are tailored to the system under test
and the workflow used. During development we tested the
communication between each microservice, representing the
minimal resource requirements for the IntelliSecTest solution.

Integration tests require only two cores and 6 GB of memory
to complete within 10 to 60 seconds. The hardware require-
ments have been obtained using real-world examples, mJS
and libTiff. Each with a size of 35 K lines of code (KLOC), has
specific resource requirements for testing which can be seen in
Table 1.

These are just examples, but the architecture is designed to
support and cater to your specific needs, whether you need to
use some of the microservices or combine them.

Minimum and Recommended System Hardware Requirements for Common Tasks

Minimum hardware requirements

Recommended hardware requirements

CPU Cores

2

5

Memory (GB)

6

11

Table 1: Minimum and Recommended System Hardware Requirements for Common Tasks. CPU

requirements can be adjusted based on runtime, while memory requirements remain fixed.

Current runtime values are suggested for daily tasks, but higher values increase the likelihood of

achieving greater coverage. For release testing, a runtime of 24 hours is recommended.

5.	 Case Studies

Demonstrating the effectiveness of the IntelliSecTest solution on the
open-source software projects mJS and libTiff.

17

Case Studies

To assess the effectiveness of the IntelliSecTest solution, we
conducted a series of experiments on two SUTs: the open
source softwares mJS7 and libTiff8. These SUTs were chosen
due to their documented vulnerabilities (as referenced in the
CVE databases) and their widespread usage. In this section, we
illustrate how the IntelliSecTest solution enhances developer
workflows through these case studies.

5.1	 Testing Proprietary Code: mJS

Our first case study is conducted from the perspective of a
development team which decides to systematically address
the security of their project (namely, a JavaScript interpreter).
Since a lot of code has been written, the team decides to rely
on automated tools to avoid the manual effort of inspecting
the code through reviews. Since the team has no experience
in using automated security testing tools and interpreting their
results, they are is looking for a holistic solution that provides
results in a developer-friendly way, within the IDE.

The IntelliSecTest solution is a perfect fit for the development
needs, as it can be run fully automated with minimal configu-
ration and user interaction, delivering only the actual results
inside the source code in the IDE of the developer’s choice.

The IntelliSecTest solution provides a pre-built configuration,
called job graph, that uses various static and dynamic analysis
tools, to perform the security analysis required by the develo-
per, and only requires inputs such as the location of the source
code (e.g., URL of the repository) and compilation scripts. Since
the IntelliSecTest solution reports findings as soon as they are
confirmed, developers do not have to wait for the analysis to

7	 https://github.com/cesanta/mjs

8	 http://www.libtiff.org

be completed, but get the results presented within their IDE as
soon as they arrive. In addition, executable test cases and stack
trace information are provided with each confirmed vulnerabili-
ty for analysis and debugging purposes.

We illustrate how to use the IntelliSecTest solution and what
results can be expected using mJS as an example. mJS is a
lightweight JavaScript engine designed for microcontrollers
and other constrained devices. This engine is particularly useful
for Internet of Things (IoT) applications, where it allows deve-
lopers to write and deploy JavaScript code directly on micro-
controllers, facilitating rapid prototyping and development of
connected devices.

After running the IntelliSecTest solution for 24 hours, the deve-
lopers were presented with seven actual vulnerabilities that
had previously gone undetected. This immediate and accurate
detection demonstrates the IntelliSecTest solution’s capabilities
to identify vulnerabilities. The results of the verification of the
vulnerability candidates are summarized in Table 2, highlighting
the effectiveness of the IntelliSecTest solution in identifying
vulnerabilities and providing developers with the information
they need to maintain a secure development life cycle.

During the static code analysis phase, IntelliSecTest identifies 35
vulnerability candidates, primarily related to memory manage-
ment and buffer overflows. These vulnerability types are critical
because they often represent significant security risks if left
unaddressed. To investigate these potential vulnerabilities,
IntelliSecTest generates specific test cases to exercise 22 of
the 35 vulnerability candidates. This automation of test case
generation ensures that the majority of potential vulnerabilities
are thoroughly tested without the need for extensive manual
effort.

After executing these test cases, seven candidates are con-
firmed as true positives. These true positives represent real
security vulnerabilities, demonstrating the accuracy and effec-
tiveness of the IntelliSecTest tool. By discovering these issues in

https://github.com/cesanta/mjs
http://www.libtiff.org

18

Case Studies

3rd party or proprietary code, developers can take immediate
action to implement the necessary fixes. In recent testing, the
generation process for confirming seven vulnerabilities took
only a few seconds. This rapid turnaround ensures that poten-
tial security issues are quickly verified, allowing developers
to address them promptly. By significantly reducing the time
between reporting and confirmation, the IntelliSecTest solution
enhances the efficiency of your security testing workflow.

For the remaining 13 vulnerability candidates, where specific
test cases cannot be generated, the IntelliSecTest solution
performs targeted fuzzing. Each vulnerability candidate is tho-
roughly fuzzed for up to three hours. Despite these efforts, no
true positives were identified within three hours per vulnera-
bility candidate, strongly suggesting that these candidates are
likely false positives. To quantify the unconfirmed vulnerability
candidates, the IntelliSecTest solution provides a residual risk
estimation, assigning a probability value to each vulnerability
candidate that helps to assess the likelihood of each candidate
being a true positive.

The automated generation of test cases and the use of targe-
ted fuzzing for remaining candidates demonstrate the effi-
ciency of the IntelliSecTest solution. It minimizes the reliance
on manual testing, accelerates the debugging process, and
ensures comprehensive code coverage. Unlike existing secu-
rity analysis tools, the IntelliSecTest solution provides a more
comprehensive and accurate security assessment by reporting
exactly where the vulnerabilities are located and how they
manifest during their execution. By pinpointing the exact lines
of code where vulnerabilities reside, developers can quickly
address issues and seamlessly integrate security fixes into their
workflow. This efficiency not only accelerates the development

process by reducing the time and effort required for remedia-
tion, but also significantly reduces the risk of security breaches.
For an example of a result within IDE, see Figure 9. The IDE
integration provides both validated (left side) and potential
vulnerabilities that have not yet been classified as true or
false positives (right side). Developers are not only shown the
(potential) vulnerability, they also get important information
about the data flows that lead to the vulnerability.

Using the IntelliSecTest solution significantly increases both
the speed and effectiveness of security testing and provides a
comprehensive set of benefits:

Accurate identification of vulnerabilities
IntelliSecTest employs a combination of static and dyna-
mic analysis to accurately identify vulnerabilities. This dual
approach ensures a comprehensive detection of both code-
level issues and runtime anomalies. By understanding the
context in which the vulnerabilities occur, IntelliSecTest can
generate highly targeted test cases. Static analysis can provide
the exact line of code where the vulnerability resides, as shown
in Figure 9, and dynamic security testing ensures that only true
positives are reported. The figure shows that the developer is
informed about a double-free vulnerability in line 1061.

Reduced manual effort
Developers are not required to manually review the code or
write an extensive test suite for each vulnerability candidate,
significantly reducing the time required for security testing. In
the case of the experiment conducted, test cases for 22 vul-
nerability candidates are automatically generated without the
involvement of a developer.

Performing 24 h vulnerability detection process for mJS

Test Cases

Duration

Results

Static Analysis

(SA)

n/a

around 2 min (in total)

35 vulnerability candidates

Verification of SA Findings

(Constraint Solving)

3 test cases on avg.

(per vulnerability candidate)

5:30 min on avg.

per vulnerability candidate

7 confirmed vulnerabilities

(plus 12 further vulnerabilities)

Verification of SA Findings

(Directed Fuzzing)

450,000 test cases on avg.

(per vulnerability candidate)

1h per vulnerability candidate

0 confirmed vulnerabilities

Table 2: Performing 24 hrs vulnerability detection process for mJS

19

Case Studies

Vulnerability-specific test case generation
Instead of relying on generic test cases, IntelliSecTest genera-
tes tests based on the specific type of the vulnerability and its
context within the source code. Vulnerability specific test gene-
ration ensures that the test case is most likely to exploit the
vulnerability in question, increasing the likelihood of detecting
true positives and saving resources.

Early and continuous feedback
The IntelliSecTest solution integrates seamlessly into the develop-
ment CI/CD pipeline, providing continuous and early feedback
to developers. Vulnerabilities are identified during development,
thus accelerating the overall vulnerability fixing process.

5.2	 Testing 3rd Party Code: libTiff

The second case study considers a development team that
wishes to incorporate TIFF file processing functionality into its
application. During the research phase, the team identified
libTiff as a suitable candidate to use for this purpose. The
development team locates the header files that export the
functionality and becomes acquainted with the build steps.
Prior to integrating the library into their application, the team
aims to ascertain that it does not introduce any unknown
vulnerabilities from libTiff. As the team lacks experience in
security analysis, they intend to rely on a fully automated tool.

IntelliSecTest offers an effective solution for automated vulne-
rability detection, eliminating the need for in-depth security
expertise or familiarity with the 3rd party code. It offers a pre-
defined configuration for testing 3rd party code based on an
automated fuzzing workflow, requiring the user to input only
the location of the header files and the necessary build steps.
The analysis results are presented in an accessible format,
accompanied by detailed information on the nature of the
vulnerability, its location, and the corresponding call stack.

We evaluated the capability of IntelliSecTest to test 3rd party
code (cf. Section 4.2) on libTiff, as included in the Magma9
framework. As previously stated, libTiff is a library for proces-
sing images in the TIFF format. The library offers its functio-
nality through an API comprising 182 functions and a total of
25,000 lines of code. The version included in Magma contains
14 “forward-ported” real-world bugs, as documented on the
GitHub page for the project10. These bugs are included to test
the ability to reach deep paths within the library as well as the
ability of testing tools to trigger real-world bugs.

9	 https://hexhive.epfl.ch/magma/

10	 https://github.com/HexHive/magma/tree/v1.2/targets/libtiff/patches/bugs

Once the location of the library header files and the build
configuration steps have been provided, IntelliSecTest per-
forms the subsequent steps without requiring user input. In
the initial phase, IntelliSecTest’s static analysis tool identified 68
API functions as potential entry points for a fuzzing campaign.
The results were then used to generate a fuzz driver, which
was subsequently fuzzed for 24 hours with AFL++. Within this
time frame, IntelliSecTest achieved an average line coverage of
18% while producing 814 crashes. The further post-processing
of crash deduplication reduced the number of crashes to 172
(21%), which is the result presented to the user. For comparison,
state-of-the-art deduplication tools such as Crashwalk reduce
the same crashes merely to 613. At the same time the IntelliSec-
Test-generated driver can reach four Magma bugs and trigger
three of those.

The integration of automated fuzz driver generation and dedu-
plication in a tool like IntelliSecTest provides substantial bene-
fits for development teams seeking to guarantee the security
of their applications without extensive security expertise.

Reduced Manual Effort
The automatic generation of fuzz drivers eliminates the need
for developers to manually write fuzzing scripts, thus streamli-
ning the process. This significantly reduces the time and effort
required to set up a fuzzing campaign, particularly in the case of
3rd party code. This allows developers to focus on other critical
tasks. To initiate a fuzzing campaign, developers simply need to
provide the location of the header files and the build confi-
guration steps. The tool handles the rest, making the process
accessible to those with limited security analysis experience.

Comprehensive Coverage
IntelliSecTest automatically identifies API functions as entry
points, ensuring comprehensive testing of the library’s func-
tionality and eliminating the need for the manual effort. For
libTiff, 68 such potential entry points have been identified for
fuzzing. The manual identification of these entry points would
be extremely time-consuming and error-prone. It would requi-
re developers to meticulously analyze the codebase to pinpoint
relevant API functions.

Enhanced Crash Deduplication
The automated deduplication of crashes reduces the number
of unique issues that developers must investigate. This
approach streamlines the analysis process by focusing on
distinct vulnerabilities, rather than repeatedly examining similar
crashes. In the absence of deduplication, developers would
be confronted with the task of investigating 814 crashes, a
significant increase from the 174 crashes reported by IntelliSec-
Test. Each of these crashes would require individual attention
to determine their root causes and potential fixes, which would
be a significant time commitment for the development team.

172

613

814

0 100 200 300 400 500 600 700 800 900

Unique Crashes (IntelliSecTest)

Unique Crashes (CrashWalk)

Total Crashes

smaller is better

20

Case Studies

Superior Deduplication The tool’s deduplication capabili-
ties exceed those of state-of-the-art tools such as Crashwalk.
In the case study, IntelliSecTest reduced 814 crashes to 172
unique issues, whereas Crashwalk reduced them to 613. This
highlights IntelliSecTest’s ability to minimize redundant crash
reports more effectively, allowing developers to focus on
addressing unique vulnerabilities.

Time Savings By reducing the number of crashes to be analy-
zed, deduplication saves valuable time for developers, allowing
them to address critical issues faster.

Improved Resource Allocation With fewer crashes to
investigate, development and security teams can allocate
their resources more effectively, focusing on high-impact
vulnerabilities.

Enhanced Reporting Deduplication provides more mea-
ningful and manageable reports, making it easier for stake-
holders to understand the security posture and make informed
decisions.

5.3	 Patch Validation: mJS

During the software testing phase, the aforementioned
development team identified a potential security vulnerability.
One of the automatically generated test cases confirmed that
the vulnerability poses a security risk. The team was able to
develop a corresponding patch thanks to the feedback provi-
ded by the IntelliSecTest solution regarding the code location
responsible for the vulnerability. The effectiveness of the patch
in fully eliminating the vulnerability is yet to be determined. It
is possible that the patch may only address the issue on a parti-
cular input or configuration of the system.

To ensure the comprehensive elimination of the vulnerability by
the security patch, IntelliSecTest offers assistance in the Patch
Validation workflow. In this phase, new test cases that trigger

the vulnerability in the unpatched system are generated and
then executed on the patched version. This process ensures
that the patch not only addresses the vulnerability identified by
the initial test case that exposed the vulnerability.

To demonstrate the process of Patch Validation, we conducted
additional experiments on mJS. These experiments analyzed a
segmentation fault11, which was supposed to be fixed the cur-
rent version [or release]. In a period of 24 hours, the IntelliSec-
Test solution was able to generate 64 test cases that triggered
the bug in the unpatched version. Of the 64 test cases, one
also uncovered a vulnerability in the patched system. This
detection demonstrated that the initial patch did not fully
address the underlying security issue. By revealing that the
vulnerability was not fully fixed, IntelliSecTest demonstrates its
power for supporting robust and thorough security measures.
This proactive approach not only improves the quality of pat-
ches but also significantly enhances the security and reliability
of the application.

The IntelliSecTest solution offers a comprehensive set of bene-
fits that streamline the patch management process, enhance
security, and reduce operational costs:

Reduced Number of Patch Revisions
The validation of security patches has the effect of reducing
the number of patch revisions required. By thoroughly valida
ting patches before deployment, the IntelliSecTest solution
ensures that patches are effective and reliable from the first
release. IntelliSecTest’s patch validation saves valuable time and
resources by minimizing the need for subsequent revisions and
updates. For instance, the incomplete patch for mJS’ segmen-
tation fault could have been found directly during the original
patch development [or validation]«.

11	 https://github.com/cesanta/mjs/issues/249

Figure 13: Crash deduplication by CrashWalk and IntelliSecTest

System Hardware Consumption for Different Workflows.

Workflow

Testing proprietary software (mJS)

Testing 3rd party dependency (libTiff)

Patch validation

CPU Cores

5

5

7

Memory (GB)

11

10

12

Table 3: System hardware consumption for different workflows

21

Case Studies

No Need to Design and Implement Test Cases
The automated creation and execution of 64 test cases that
trigger the vulnerability significantly reduces the reliance on
manually written test cases. This automation not only accelera-
tes the testing process but also guarantees comprehensive and
uniform testing, which is vital for identifying and addressing
alternative inputs that could trigger the vulnerability.

Early Feedback on Patch Quality
One of the key benefits of IntelliSecTest’s Patch Validation
solution is the early feedback it provides on patch quality. By
integrating seamlessly with development workflows, Intelli-
SecTest provides immediate insights into the effectiveness and
stability of patches, offering valuable feedback that can be
incorporated into the development process. This early feed-
back loop enables developers to implement necessary adjust-
ments before full deployment, thereby ensuring higher quality
and more reliable patches.

Reduced Attraction of Attackers
Effective patch validation and timely deployment reduce the
window of opportunity for potential attackers. By ensuring
the robustness and vulnerability-free status of patches prior to
release, IntelliSecTest helps to mitigate the risk of exploits and
enhance the overall security posture of your systems.

Lower Patch Deployment Costs
IntelliSecTest optimizes the entire patch management process,
resulting in lower deployment costs. By reducing the number
of patch revisions, manual test cases, and the time required for
root cause identification, IntelliSecTest enables a more efficient
and cost-effective deployment process. This not only saves
direct costs induced by development but also minimizes the
indirect costs associated with system downtime and security
breaches.

5.4	 Resource Consumption

Considering the resource consumption of security testing tools
is critical for optimizing performance and ensuring the efficient
integration into development environments. In Table 3, we pre-
sent the relevant metrics of the IntelliSecTest solution, focusing
on CPU and memory usage during the testing process of the
previously described case studies. By showcasing these metrics,
we provide a comprehensive view of the resource demands
associated with the IntelliSecTest solution. This information
helps developers and organizations to estimate the hardware
consumption of the IntelliSecTest solution, ensuring a balan-
ce between thorough security testing and optimal resource
utilization.

One of the key advantages of the IntelliSecTest solution is
its adaptability to varying resource availability. The resource
consumption can be restricted based on the system’s capaci-
ty, ensuring that the testing process does not overwhelm the
development environment. This flexibility allows to use the
IntelliSecTest solution both on high-end servers and on more
resource-constrained machines (see minimal system require-
ments in Table 1).

6.	 Summary

The IntelliSecTest solution implements a highly effective approach to
security testing that helps manufacturers to meet the requirements from
forthcoming legislation, such as the CRA.

22

Summary

The IntelliSecTest solution offers a cutting-edge and highly
effective approach to application security testing. This solution
helps manufacturers to meet regulatory requirements as set
out in legislation such as the CRA. IntelliSecTest automates the
process of identifying security vulnerabilities in both proprie-
tary and 3rd party code and effectively supports remediating
them, leading to accelerated bug fixes and comprehensive
security coverage. Integration into common IDEs allows develo-
pers to be precisely alerted to potential weaknesses in the
code. By precisely identifying vulnerabilities through compre-
hensive static and dynamic analyses, as well as targeted fuzz
tests, the IntelliSecTest solution offers an efficient and tho-
rough security assessment. The solution allows for the rapid
and effective development of security patches and provides
development teams with specific information on vulnerability
locations in the code. The Patch Validation workflow within
IntelliSecTest ensures that developed security patches are
subjected to rigorous testing to eliminate identified vulnerabi-
lities without introducing new ones, thus maintaining soft-
ware integrity and security. Moreover, IntelliSecTest not only
improves the speed and efficacy of security testing but also
considerably reduces the risk of security breaches.

IntelliSecTest can be easily integrated into existing CI environ-
ments like GitLab. The IntelliSecTest solution helps to reduce
the number of patch revisions, automate test case genera-
tion, accelerate vulnerability identification, and provide early
feedback on patch quality. By integrating into CI environments,
IntelliSecTest offers a flexible and extensible solution that helps
manufacturers optimize their security processes and meet
regulatory requirements effectively.

By adopting innovative security testing tools and methodolo-
gies, organizations can strengthen their security posture, adapt
to regulatory changes and stay ahead in the ever-evolving
cyber-security landscape. IntelliSecTest is the tool which helps
you meet those demands.

23

Imprint

Imprint

Fraunhofer Institute for
Open Communication Systems FOKUS
Kaiserin-Augusta-Allee 31
10589 Berlin, Germany

The IntelliSecTest solution was developed in a joint research
project by the four Fraunhofer institutes IEM, AISEC, FKIE,
and FOKUS. The work was supported by the Fraunhofer
Internal Programs under Grant No. PREPARE 840 231.

Publisher
Fraunhofer Institute for
Open Communication Systems FOKUS
Kaiserin-Augusta-Allee 31
10589 Berlin, Germany

Authors
Eric Bodden, Matthias Meyer, Sriteja Kummita,
Fabian Schiebel, Lucas Briese (Fraunhofer IEM)

Julian Horsch, Konrad Hohentanner, Patrick Herter,
Vincent Alhrichs (Fraunhofer AISEC)

Elmar Padilla, Martin Clauß (Fraunhofer FKIE)

Martin Schneider, Ramon Barakat, Roman Kraus,
Fabian Jezuita (Fraunhofer FOKUS)

Design
Ivy Kunze

Illustration
Simone Geppert-Dahlhorst

Project Partners

Fraunhofer Institute for Mechatronic Systems Design (IEM)

Fraunhofer Institute for Applied and Integrated Security
(AISEC)

Fraunhofer Institute for Communication, Information
Processing and Ergonomics (FKIE)

Fraunhofer Institute for Open Communication Systems (FOKUS)

Picture Credits
title: istock / Laurence Dutton
page 5: istock / narvikk
page 16: istock / gorodenkoff
all other graphics by Fraunhofer

© Fraunhofer FOKUS,
Berlin 2024

Contact

Prof. Dr. Eric Bodden

Director Software Engineering and IT Security

Phone +49 5251 5465-150

eric.bodden@iem.fraunhofer.de

Fraunhofer IEM

Zukunftsmeile 1

33102 Paderborn, Germany

www.iem.fraunhofer.de

Dipl.-Inform. Martin Schneider

Head of Testing, Quality Engineering

Phone +49 30 3463-7383

martin.schneider@fokus.fraunhofer.de

Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31

10589 Berlin, Germany

www.fokus.fraunhofer.de

mailto:eric.bodden%40iem.fraunhofer.de?subject=
https://www.iem.fraunhofer.de/
mailto:martin.schneider%40fokus.fraunhofer.de?subject=
https://www.fokus.fraunhofer.de/

