As a basis for the development of the high-performance hardware, the research team chose the new multi-core processor P4080 by Freescale. The P4080 is built with SOI (silicium on insulator)-technology, which has a particularly low power dissipation. However, it is interesting for space travel applications not only because of its high energy efficiency, but also due to its low sensitivity to space radiation. Additionally, the P4080 offers the advantages of a highly integrated embedded processor. All important functions are already integrated on-chip. In order to guarantee the necessary robustness and safety, the eight processor cores of the P4080 are not only used to maximize computing power, but also for the realization of high-performance fault-tolerance mechanisms. Particularly critical calculations are executed in parallel on different processor cores to allow for a safe comparison of the validity of the results. For this, the hardware specialists implement a synchronization and voting unit in a radiation-tolerant FPGA component, which can compare redundant computation results on-the-fly.
In addition to the control hardware, the another research team from Fraunhofer FOKUS developed an optical position sensor in the MUSE project which could be combined with other sensors (e.g. radar or laser-based distance measurement, LIDAR) in a spacecraft. Using the position sensor, the live picture of up to three cameras can be compared with previously stored image information of the projected landing site. In a training period, a model of the landing site will be generated using existing image data (2D and digital elevation model) and FERN classifiers. During the approach, the live camera data is compared with the landing site’s model using the FAST Feature detection method and the trajectory is adjusted accordingly. The procedure is safeguarded additionally by comparing the stored camera image with the live one using optical flow procedures (alterations of features of two successive images). Beyond that, a stereo image may be generated using two cameras with which the distance to as well as the condition of the landing site’s surface can be determined. All algorithms are running redundantly if needed and are parallelized in such a fashion that each of the hardware’s eight cores is utilized ideally.
The project is funded by the space agency of the Deutsche Zentrum für Luft- und Raumfahrt e.V. (German Aerospace Center) with resources from the Bundesministerium für Wirtschaft und Technology (German Federal Ministry of Economy and Technology).